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Abstract

We are living in the era of Big Data where data is generated at an unprecedented pace
from various sources all over the world. These data can be transformed into meaningful
information that has a direct impact on our daily life. To cope with the tremendous
volumes of Big Data, large-scale infrastructures and scalable data management techniques
are needed. Cloud computing has been evolving as the de-facto platform for running
data-intensive applications. Meanwhile, large-scale storage systems have been emerging
to store and access data in cloud data centers. They run on top of thousands of machines
to offer their aggregated storage capacities, in addition to providing reliable and fast data
access. The distributed nature of the infrastructures and storage systems introduces an
ideal platform to support Big Data analytics frameworks such as Hadoop or Spark to
efficiently run data-intensive applications.

In this thesis, we focus on scalable and efficient data management for building and
running data-intensive applications. We first study the management of virtual machine
images and containers images as the main entry point for efficient service provisioning.
Accordingly, we design, implement and evaluate Nitro, a novel VMI management system
that helps to minimize the transfer time of VMIs over a heterogeneous wide area network
(WAN). In addition, we present two container image placement algorithms which aim to
reduce the maximum retrieval time of container images in Edge infrastructures. Second,
towards efficient Big Data processing in the cloud, we investigate erasure coding (EC)
as a scalable yet cost-efficient alternative for replication in data-intensive clusters. In
particular, we conduct experiments to thoroughly understand the performance of data-
intensive applications under replication and EC. We identify that data reads under EC are
skewed and can result in noticeable performance degradation of data-intensive applica-
tions. We then introduce an EC-aware data placement algorithm that targets balancing
data accesses across nodes and therefore improving the performance of data-intensive
applications under EC.
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Résumé

Si nous stockions tous les mots jamais prononcés par l’être humain, leur volume serait
égale à celui des données générées en seulement deux jours1. Le dernier rapport de
l’International Data Corporation (IDC) prévoit même que les données générées dépassent
les 175 zettaoctets2 d’ici à 2025 [130]. Ces données sont produites par diverses sources
telles que des capteurs, des médias sociaux ou des simulations scientifiques. Ce flot
de données permet aux entreprises et aux universités d’améliorer leurs services et leurs
connaissances qui ont un impact direct sur nos vies. Par exemple, les grandes sociétés
Internet telles que Google et Facebook analysent les données recueillies quotidiennement
pour améliorer l’expérience des utilisateurs, tandis que des instituts de recherche comme
le Laboratoire National d’Argonne effectuent des simulations complexes pour repousser
les limites du savoir humain [255]. Il est donc indispensable de permettre une gestion des
données efficace à grande échelle pour transformer ces gigantesques volumes de données
en informations utilisables.

Pour faire face à l’énorme volume de données (ce qu’on appelle le “Big Data”), des
infrastructures et des techniques de gestion de données à grande échelle sont néces-
saires. De fait, les centres de calculs sont devenus les plate-formes privilégiées pour
l’exécution d’applications de type « Big Data ». les centres de calculs donnent l’illusion
de ressources infinies auxquelles on peut accéder à bas prix. Récemment, des fournisseurs
d’informatique en cloud tels qu’Amazon, Microsoft et Google ont doté leurs infrastruc-
tures de millions de serveurs répartis dans le monde entier pour faciliter la gestion des
données massives. Par exemple, Amazon Web Services (AWS) compte au total près de
5 millions de serveurs [144], hébergés dans des centaines de centres de données répartis
sur 5 continents [26], et des millions de services y sont lancés tous les jours [35]. D’autre
part, des systèmes de stockage à grande échelle sont apparus pour stocker et accéder aux
données dans ces centres de données. Ils fonctionnent sur des milliers de machines offrant
leurs capacités de stockage agrégées, en plus de fournir un accès fiable et rapide aux don-
nées. Par exemple, le système cloud Windows Azure Storage (WAS) héberge plus d’un
exaoctet de données [123] et traite plus de deux milliards de transactions par jour [45]. La
nature distribuée des infrastructures et des systèmes de stockage en fait une plate-forme
idéale pour prendre en charge les infrastructures logicielles d’analyse Big Data telles que
Hadoop [19] ou Spark [20] pour exécuter efficacement des applications de type « Big Data
». Par exemple, plus d’un million de tâche Hadoop, traitant des dizaines de pétaoctets
de données, sont lancés chaque mois dans les centres de données de Facebook [49].

En général, les services cloud, y compris les services d’analyse de données (p. ex.
1On estime que 2,5 exaoctets sont produits chaque jour [117] et que tous les mots jamais prononcés

par l’être humain ont une taille de 5 exaoctets [116].
21 zettaoctet équivaut à 1021 octets, soit 1 million de pétaoctets.
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Amazon Elastic MapReduce [14] ou Microsoft Azure HDInsight [112]), sont déployés en
tant que machines virtuelles (VM, virtual machine) ou conteneurs. Le déploiement d’un
service pour exécuter des applications cloud nécessite que l’image du service (une image
qui encapsule le système d’exploitation et le logiciel du service ainsi que ses dépendances)
soit stockée localement sur le serveur hôte. Sinon, l’image correspondante est transférée
via le réseau vers le serveur de destination, ce qui introduit un délai dans le temps de
déploiement. La demande croissante de fourniture rapide de services, en plus de la taille
et du nombre croissants d’images de services (p. ex. AWS fournit plus de 20 000 images
différentes3, et leurs tailles atteignent des dizaines de gigaoctets [35, 258]) rendent la
gestion des images de service essentielle pour la déploiement de services dans le cloud.
De plus, la tendance actuelle au déploiement sur plusieurs sites - facilitée par les centres
de calcul géographiquement distribués [296, 26, 101] - et l’adoption progressive de l’Edge
pour permettre le traitement sur place (c.-à-d. en déplaçant le calcul vers les sources
de données) posent de nouveaux défis pour le déploiement de machines virtuelles et de
conteneurs. Cela est dû à la bande passante limitée et à l’hétérogénéité des connexions
de réseau étendu (WAN, wide area network), ainsi qu’aux capacités de stockage limitées
des serveurs Edge. Par conséquent, il est crucial de fournir une gestion des images de
conteneur et de machine virtuelle efficace à grande échelle pour faciliter et permettre un
déploiement rapide des services dans les clouds distribués et les systèmes Edge.

Traditionnellement, les systèmes de stockage distribués utilisent la réplication pour
assurer la disponibilité des données. En outre, les infrastructures d’analyse des données,
notamment Spark [20], Flink [18] et Hadoop [19], bénéficient largement de la réplication
pour gérer les pannes (c.-à-d. les tâches des machines en panne peuvent être simplement
ré-exécutées ailleurs à l’aide d’autres répliques des données [66, 305]) et améliorer les per-
formances des applications de type « Big Data » dans les centres de calculs en augmentant
la probabilité d’ordonnancement des tâches de calcul sur la machine hébergeant les don-
nées d’entrée [36, 128, 309]). Cependant, avec la croissance incessante de la quantité de
données et l’adoption progressive de périphériques de stockage rapides mais cher (c.-à-d.
SSD et DRAM), les coûts matériels et de stockage de la réplication deviennent de plus en
plus importants [234, 252, 316]. Les codes d’effacement (EC, erasure coding) apparais-
sent comme une alternative offrant une grande disponibilité avec un surcoût de stockage
moindre. Ainsi, ils sont actuellement déployés dans de nombreux systèmes de stockage
distribués [263, 111, 86, 123, 252, 195]. Par exemple, en appliquant EC, Microsoft réduit
de plus de 50% le surcoût de stockage par rapport à la réplication [123]. L’exécution
d’applications de type « Big Data » sous EC réduira aussi le surcoût de stockage, en
revanche, ça peut entraîner un important transfert de données car les données d’entrée
de chaque tâche de calcul sont dispersées sur plusieurs machines. Par conséquent, il est
important de comprendre les performances des applications de type « Big Data » sous
EC afin de combler le fossé entre les infrastructures logicielles d’analyse et les données
codées par effacement, afin de permettre un traitement efficace de ces données à grande
échelle.

En résumé, le sujet de cette thèse est la gestion de données efficace à grand échelle
pour le déploiement et l’exécution d’applications de type « Big Data » dans les centres
de caluls.

3Nous avons obtenu le nombre d’images depuis le tableau de bord d’Amazon EC2 le 26 juil. ., 2019.
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Contributions

Dans cette thèse, nous nous concentrons sur la gestion de données efficace à grande échelle
pour la conception et l’exécution d’applications de type « Big Data ». Nous étudions la
gestion des images de machines virtuelles et des images de conteneurs en tant que point de
départ principal pour le déploiement efficace de services. De plus, nous étudions les codes
d’effacement comme alternative à la réplication permettant à la fois un meilleur passage
à l’échelle et une diminution du surcoût de stockage dans les clusters très consommateurs
de données. Les principales contributions de cette thèse peuvent être résumées ainsi :

Permettre le déploiement efficace de services dans les centres de calcul
géo-distribués. La plupart des grands fournisseurs de services cloud, tels qu’Amazon et
Microsoft, répliquent leurs images de machines virtuelles (VMIs, virtual machine images)
sur plusieurs centres de données éloignés géographiquement pour offrir un déploiement
rapide de leurs services. La mise en place d’un service peut nécessiter le transfert d’une
VMI sur le réseau WAN. Sa durée dépend donc de la distribution des VMIs et de la bande
passante du réseau entre les sites différents. Néanmoins, les méthodes existantes pour
faciliter la gestion de VMIs (c.-à-d. récupération des VMIs) négligent l’hétérogénéité du
réseau dans les clouds géo-distribués. Pour y répondre nous proposons Nitro, un nouveau
système de gestion de VMI qui permet de minimiser le temps de transfert des VMIs sur
un réseau WAN hétérogène. Pour atteindre cet objectif, Nitro intègre deux techniques
complémentaires. Premièrement, il utilise la déduplication pour réduire la quantité de
données qui sera transférée en raison des similitudes élevées entre les images. Deuxième-
ment, Nitro est doté d’une stratégie de transfert de données prenant les caractéristiques
du réseau en compte afin d’exploiter efficacement les liaisons à bande passante élevée lors
de la récupération de données et ainsi accélérer le temps de déploiement. Les résultats
expérimentaux montrent que cette stratégie de transfert de données constitue la solution
optimale lors de l’acquisition de VMI tout en minimisant les coûts engendrés. De plus,
Nitro surpasse de 77% les systèmes de stockage VMI (c.-à-d. OpenStack Swift), à la
pointe de la technologie. Ces travaux ont conduit à une publication lors de la conférence
internationale CCGrid 118 [62].

Prise en compte des charactéristiques du réseau lors du placement d’images
conteneur sur un réseau de type Edge. L’Edge computing vise à d’étendre le
cloud computing en rapprochant les calculs des sources de données afin d’améliorer les
performances les applications et les services à court temps d’exécution et à faible latence.
Fournir un temps de déploiement de ces services rapide et prédictible constitue un défi
nouveau à l’importance croissante, à mesure que le nombre de serveurs Edge augmente et
que l’hétérogénéité des réseaux augmente. Ce travail est motivé par une question simple :
pouvons-nous placer des images de conteneur sur des serveurs Edge de manière à ce qu’une
image puisse être récupérée sur n’importe quel serveur Edge rapidement et dans un délai
prévisible ? pour ce faire, nous proposons KCBP et KCBP-WC, deux algorithmes de
placement d’images de conteneur qui visent à réduire le temps de récupération maximal
de ces images. KCBP et KCBP-WC sont basés sur la résolution du problème du k-Center.
Cependant, KCBP-WC essaie en plus d’éviter de placer de grandes couches d’une image
de conteneur sur le même serveur Edge. Les évaluations utilisant des simulations basées
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sur des traces montrent que KCBP et KCBP-WC peuvent être appliquées à diverses
configurations de réseau et permettent de réduire le temps de récupération maximal des
images de conteneur de 1,1 à 4x par rapport aux techniques de placements de l’état
de l’art (c.-à-d. Best-Fit et Random). Ces travaux ont conduit à une publication à la
conférence internationale ICCCN 119 [63].

Caractérisation des performances des code d’effacement dans des clusters
avec un volume important de données. Les clusters à forte intensité de données
s’appuient sur les systèmes de stockage distribués pour s’adapter à la croissance sans
précédent des quantités de données. Le système de fichiers distribué Hadoop (HDFS) [263]
est le système de stockage principal des infrastructures logicielles d’analyse de données
telles que Spark [20] et Hadoop [19]. Traditionnellement, HDFS fonctionne en utilisant
la réplication pour garantir la disponibilité des données et permettre l’exécution locale
de tâches d’applications de type « Big Data ». Récemment, les codes d’effacements (EC)
apparaît comme une méthode alternative à la réplication dans les systèmes de stockage
en raison de son surcoût réduit en temps de calcul. Malgré un grand nombre d’études
visant à améliorer le temps de récupération sous EC en termes de sur-sollicitation de
réseau et de disque, les caractéristiques de performance des tâches d’analyse exécutées
sous EC ne sont pas claires. En réponse, nous avons mené des expériences pour bien
comprendre les performances d’applications de type « Big Data » utilisant la réplication
et EC. Nous avons utilisé des tests représentatifs sur le banc d’essai Grid’5000 [105]
pour évaluer l’incidence des paramètres d’accès aux données, des accès simultanés aux
données, des charges de travail analytiques, de la persistance des données, des défaillances,
des périphériques de stockage principaux et de la configuration réseau. Si certains des
résultats sont conformes à l’intuition, d’autres sont plus inattendus. Par exemple, la
contention au niveau du disque et du réseau causés par la distribution aléatoire des blocs
et la méconnaissance de leurs fonctionnalités sont les principaux facteurs affectant les
performances des applications de type « Big Data » sous EC, et non la non-localité
des données. Une partie de ce travail a conduit à une publication lors de la conférence
internationale MASCOTS 119 [61].

Pris en compte des codes d’effacement par le système de fichiers distribués
Hadoop (HDFS). Nous observons que l’ordonnanceur de tâches Hadoop ne prend pas
en compte la structure des fichiers sous EC et peut entraîner un déséquilibre notable des
accès aux données sur les serveurs lors de l’exécution d’applications de type « Big Data
». Cela entraîne des stragglers (c.-à-d. certaines tâches présenteront un grand écart dans
leur exécution et prendront plus de temps que leur exécution moyenne) qui prolongeront à
leur tour le temps d’exécution des applications. En conséquence, dans le but d’améliorer
les performances de l’analyse de données avec les codes d’effacement, nous proposons un
algorithme de placement sensible à EC qui équilibre les accès aux données d’un serveur à
l’autre en tenant compte de la sémantique des blocs de données lors de leur distribution.
Nos expériences avec la série de test Grid’5000 [105] ont montré que le placement EC
peut réduire jusqu’à 25% le temps d’exécution des applications Sort et Wordcount. Nos
résultats motivent l’intégration de technique prenant en compte les spécificité d’EC au
niveau de l’ordonnancement afin de faire face à la dynamicité de l’environnement.
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Introduction

Contents
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1.1 Context

If we store all words ever spoken by human beings, its size will be equal to the size of
data generated in just two days1. Furthermore, the latest report from the International
Data Corporation (IDC) expects the generated data to bypass the 175 zettabytes2 by
2025 [130]. These data are produced by various sources such as sensors, social media,
or scientific simulations. This deluge of data allows empowering businesses as well as
academia and has a direct impact on our lives. For example, large Internet companies such
as Google and Facebook analyze their daily collected data to improve users’ experiences,
while research institutes such as Argonne National Laboratory run complex universe
simulations to push further the boundaries of human knowledge [255]. Hence, enabling
scalable and efficient data management to transform these gigantic data volumes into
useful information is indispensable.

To cope with the tremendous volumes of Big Data, large-scale infrastructures and
scalable data management techniques are needed. Cloud computing has been evolving as
the de-facto platform for running data-intensive applications. Clouds provide the illusion
of infinite resources which can be accessed in a cost-effective manner. Recently, cloud
providers such as Amazon, Microsoft, and Google have equipped their infrastructures
with millions of servers distributed world-wide to ease the management of Big Data. For
example, Amazon Web Services (AWS) has almost 5 million servers in total [144] hosted

1It is estimated that 2.5 exabytes are produced every day [117] and all words ever spoken by human
beings have a size of 5 exabytes [116].

21 zettabyte equals to 1021 bytes, or 1 million petabytes.
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CHAPTER 1. INTRODUCTION

in hundreds of data centers on 5 continents [26], with millions of services launched every
day [35]. Meanwhile, large-scale storage systems have been emerging to store and access
data in cloud data centers. They run on top of thousands of machines to offer their
aggregated storage capacities, in addition to providing reliable and fast data access. For
example, the cloud-based Windows Azure Storage (WAS) system hosts more than an
exabyte of data [123] and handles more than two billion transactions per day [45]. The
distributed nature of the infrastructures and storage systems introduces an ideal platform
to support Big Data analytics frameworks such as Hadoop [19] or Spark [20] to efficiently
run data-intensive applications. For instance, over one million Hadoop jobs, processing
tens of petabytes of data, are launched every month in Facebook data centers [49].

In general, cloud services, including data analytics services (e.g., Amazon Elastic
MapReduce [14], Microsoft Azure HDInsight [112], etc.), are deployed as virtual ma-
chines (VMs) or containers. Provisioning a service to run cloud applications requires
the service image (an image which encapsulates the operating system and the service
software along with its dependencies) to be stored locally on the host server. Otherwise,
the corresponding image is transferred through the network to the destination server
introducing a delay in the provisioning time. The increasing demand for fast service
provisioning in addition to the increasing size and number of service images (e.g., AWS
provides more than 20,000 different public images3, and their sizes could attain dozens
of gigabytes [35, 258]) make service image management essential for service provision-
ing in the cloud. Moreover, the current trend towards multi-site deployment – which is
facilitated by geographically distributed clouds [296, 26, 101] – and the wide adoption
of Edge computing to enable in-place processing (i.e., by moving computation near data
sources) bring new challenges in provisioning VMs and containers. This is due to the
limited bandwidth and the heterogeneity of the wide area network (WAN) connections,
as well as the limited storage capacities in Edge-servers. Consequently, it is crucial to
provide scalable and efficient VM and container images management to ease and enable
fast service provisioning in distributed clouds and Edge systems.

Traditionally, distributed storage systems operate under replication to ensure data
availability. In addition, data analytics frameworks including Spark [20], Flink [18], and
Hadoop [19] have extensively leveraged replication to handle machine failures (i.e., tasks
of the failed machines can be simply re-executed using other replicas of the data [66, 305])
and improve the performance of data-intensive applications in clouds (i.e., improve data
locality by increasing the probability of scheduling computation tasks on a machine which
hosts the input data [36, 128, 309]). However, with the relentless growth of Big Data, and
the wide adoption of high-speed yet expensive storage devices (i.e., SSDs and DRAMs) in
storage systems, replication has become expensive in terms of storage cost and hardware
cost [234, 252, 316]. Alternatively, erasure codes (EC) provide high data availability with
low storage overhead. Thus, they are currently deployed in many distributed storage
systems [263, 111, 86, 123, 252, 195]. For example, by applying EC, Microsoft reduces
the storage overhead in its cloud-based object store by more than 50% compared to
replication [123]. While executing data-intensive applications under EC can also result
in low storage overhead, this may incur large data transfer because the input data of
each computation task (e.g., map tasks in Hadoop) is scattered on several machines.

3We obtained the number of images from Amazon EC2 Dashboard on Jul. 26th, 2019.
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Therefore, it is important to understand the performance of data-intensive applications
under EC and bridge the gap between analytics frameworks and erasure-coded data, to
enable efficient large-scale data processing.

Briefly, the subject of this thesis is scalable and efficient data management for provi-
sioning and running data-intensive applications in clouds.

1.2 Contributions

In this thesis, we focus on scalable and efficient data management for building and running
data-intensive applications. We study the management of virtual machine images and
containers images as the main entry point for efficient service provisioning. Moreover,
we investigate erasure codes as a scalable yet cost-efficient alternative for replication
in data-intensive clusters. The main contributions of this thesis can be summarized as
follows:

Enabling Efficient Service Provisioning in Geo-distributed Clouds

Most large cloud providers, such as Amazon and Microsoft, replicate their Virtual Ma-
chine Images (VMIs) on multiple geographically distributed data centers to offer fast ser-
vice provisioning. Provisioning a service may require to transfer a VMI over the wide area
network (WAN) and therefore is dictated by the distribution of VMIs and the network
bandwidth in-between sites. Nevertheless, existing methods to facilitate VMI manage-
ment (i.e., retrieving VMIs) overlook network heterogeneity in geo-distributed clouds. In
response, we design, implement and evaluate Nitro, a novel VMI management system that
helps to minimize the transfer time of VMIs over a heterogeneous WAN. To achieve this
goal, Nitro incorporates two complementary features. First, it makes use of deduplica-
tion to reduce the amount of data which is transferred due to the high similarities within
an image and in-between images. Second, Nitro is equipped with a network-aware data
transfer strategy to effectively exploit links with high bandwidth when acquiring data and
thus expedites the provisioning time. Experimental results show that our network-aware
data transfer strategy offers the optimal solution when acquiring VMIs while introducing
minimal overhead. Moreover, Nitro outperforms state-of-the-art VMI storage systems
(i.e., OpenStack Swift) by up to 77%. This work led to a publication at the CCGrid 118
international conference [62].

Network-Aware Container Image Placement in the Edge

Edge computing promises to extend clouds by moving computation close to data sources
to facilitate short-running and low-latency applications and services. Providing fast and
predictable service provisioning time presents a new and mounting challenge, as the scale
of Edge-servers grows and the heterogeneity of networks between them increases. This
work is driven by a simple question: can we place container images across Edge-servers
in such a way that an image can be retrieved to any Edge-server fast and in a predictable
time. To this end, we present KCBP and KCBP-WC, two container image placement
algorithms which aim to reduce the maximum retrieval time of container images. KCBP
and KCBP-WC are based on k-Center optimization. However, KCBP-WC tries to avoid

3



CHAPTER 1. INTRODUCTION

placing large layers of a container image on the same Edge-server. Evaluations using
trace-driven simulations show that KCBP and KCBP-WC can be applied to various
network configurations and reduce the maximum retrieval time of container images from
1.1x to 4x compared to state-of-the-art placements (i.e., Best-Fit and Random). This
work led to a publication at the ICCCN 119 international conference [63].

Characterizing the Performance of Erasure Coding in Data-Intensive Clusters

Data-intensive clusters are heavily relying on distributed storage systems to accommo-
date the unprecedented growth of data. Hadoop distributed file system (HDFS) [263] is
the primary storage for data analytics frameworks such as Spark [20] and Hadoop [19].
Traditionally, HDFS operates under replication to ensure data availability and to allow
locality-aware task execution of data-intensive applications. Recently, erasure coding
(EC) is emerging as an alternative method to replication in storage systems due to the
continuous reduction in its computation overhead. Despite a large body of studies tar-
geting improving the recovery overhead in EC in terms of network and disk overhead, it
is unclear what is the performance characteristics of analytics jobs running under EC.
In response, we conduct experiments to thoroughly understand the performance of data-
intensive applications under replication and EC. We use representative benchmarks on
the Grid’5000 [105] testbed to evaluate how data access pattern, concurrent data access,
analytics workloads, data persistency, failures, backend storage devices, and network
configuration impact their performances. While some of our results follow our intuition,
others were unexpected. For example, disk and network contentions caused by chunks
distribution and the unawareness of their functionalities are the main factors affecting
the performance of Big Data applications under EC, not data locality. Part of this work
led to a publication at the MASCOTS 119 international conference [61].

Bringing EC-awareness to Hadoop Distributed File System (HDFS)

We observe that Hadoop task scheduler is not aware of the data layout under EC and can
result in a noticeable skew in data accesses across servers when running data-intensive
applications. This causes stragglers (i.e., some tasks exhibit a large deviation in their
executions and take longer time to complete compared to the average task runtime)
and, in turn, prolongs the execution time of data-intensive applications. Accordingly, in
an attempt to improve the performance of data-analytics jobs under erasure coding, we
propose an EC-aware data placement algorithm that balances data accesses across servers
by taking into account the semantics of the chunks (i.e., data or parity) when distributing
them. Our experiments on top of Grid’5000 [105] testbed show that EC-aware placement
can reduce the execution time of Sort and Wordcount applications by up to 25%. Our
results pave the way and motivate the integration of EC-awareness on the scheduling
level to cope with the dynamicity of the environment.
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1.4 Software and Data

Nitro: Network-aware VMI management in geo-distributed clouds

Nitro is a Virtual Machine Image (VMI) management system for geo-distributed clouds.
Nitro reduces the network cost and optimizes the retrieval time when provisioning a
virtual machine on a site where its image is not available locally. Nitro leverages dedu-
plication to reduce the size of the image dataset, and thus, reduce network cost when
transferring images. Importantly, Nitro incorporates a network-aware chunk scheduling
algorithm that produces the optimal solution to retrieve an image.
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Programming languages Python and Yaml
Codebase size 1500 LoC
License GPL-3.0
Repository https://gitlab.inria.fr/jdarrous/nitro

Container image placement simulator in Edge environment

This is an extendable simulator to test the performance of data placement and retrieval
algorithms for layer-based container images (e.g., Docker images) in Edge like environ-
ment. It simulates the network bandwidths between the nodes in addition to their storage
capacities. It already contains four placement algorithms and two retrieval algorithms.
Examples of synthetic and real-world networks in addition to container image dataset are
included.

Programming languages Python and Yaml
Codebase size 1000 LoC (+ 1500 LoC for analysis scripts)
License GPL-3.0
Repository https://gitlab.inria.fr/jdarrous/

image-placement-edge

Hadoop EC traces

This repository contains traces of Hadoop MapReduce jobs under replication and erasure
coding. Sort, Wordcount, and K-means applications are included. These traces con-
tain runs of different software (overlapping and non-overlapping shuffle, disk persistency,
failure) and hardware (HDD, SSD, DRAM, 1 Gbps and 10 Gbps network) configurations.

Version Apache Hadoop 3.0.0
Traces size 200 MB
Format CSV and JSON
License GPL-3.0
Repository https://gitlab.inria.fr/jdarrous/hadoop-ec-traces

1.5 Structure of the Manuscript

The rest of this manuscript is organized into four parts as follows.

The first part presents the context of our research. Chapter 2 provides an overview of
Big Data and the challenges related to Big Data management. Then, we list some ex-
amples of business and scientific data-intensive applications. Chapter 3 introduces cloud
computing with its different models. Virtualization technologies are presented in more
details followed by some examples of cloud offerings and cloud management platforms.
Chapter 4 presents distributed storage systems, emphasizing on availability techniques,
along with Big Data processing frameworks.
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1.5. STRUCTURE OF THE MANUSCRIPT

The second part consists of three chapters and presents our contributions regarding
efficient service provisioning in distributed clouds. In Chapter 5, we start by defining the
problem and discussing in detail related work on service provisioning in clouds. In Chap-
ter 6, we address efficient provisioning of services in geo-distributed clouds. We introduce
Nitro, a novel data management system that minimizes the retrieval time of VMIs over
the WAN. In Chapter 7, we describe our two container image placement algorithms that
reduce the maximum retrieval time for an image to any Edge-server.

The third part consists of four chapters and presents our contributions with regards to
enabling efficient data processing under erasure codes (EC). Chapter 8 gives an overview
of the application domains of EC and how it is implemented in HDFS. In Chapter 9,
we study the performance of HDFS under EC. Chapter 10 evaluates the performance of
data-intensive applications under both replication and EC with different system config-
urations. In Chapter 11, we propose an EC-aware data placement algorithm in response
to our findings in previous chapters.

The fourth part consists of Chapter 12. In this chapter, we summarize our contributions
and present our conclusions about provisioning and running data-intensive applications
in the cloud. Finally, we discuss the limitations of the proposed solutions and describe
the perspectives.
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Chapter 2

Data and Data-Intensive Applications
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Big Data can be described as the oil of the twenty-first century [275]. Like oil, it has
a great economic value and it empowers a wide range of applications that we rely on in
everyday life. Therefore, acquiring data and analyzing it represent the new challenges in
our era. Today’s and tomorrow’s data are produced from human activities on Internet
(e.g., social media, e-commerce, and video streaming), scientific research (e.g., scientific
simulation and computational models), as well as a growing number of sensors devices
including mobiles and handheld appliances/gadgets. In this chapter, we introduce the
Big Data challenges and list examples of data-intensive applications that are managing
gigantic datasets.

2.1 The Data Deluge

The human race, throughout history, has always been willing to better understand the
world. Understanding is the fruit of knowledge which is in turn acquired from the infor-
mation we have. And finally, the information is a result of processing the data that we
collect [4]. This highlights the importance of data in a better understanding of the world
that can manifest in a wide range of business and scientific applications. Hereafter, we
first present the data dimensions in Section 2.1.1. Then we categorize the data according
to its temperature in Section 2.1.2. And finally, we describe the different data access
patterns in Section 2.1.3.

11



CHAPTER 2. DATA AND DATA-INTENSIVE APPLICATIONS

2.1.1 Data dimensions

Data can be characterized by several dimensions, however, here we review the basic three
ones that are first proposed by Doug Laney [167] back in 2001, and described as the 3’Vs
model. These dimensions present the main challenges facing data management tools.
These challenges include Volume, Velocity, and Variety [250, 295, 267, 313]. Later on,
more V challenges are added as described in [217].

Volume. Perhaps the most obvious challenge that is facing Big Data applications. Vol-
ume represents the size of the data that we are dealing with. The size of our digital
universe is growing exponentially, where data volumes double every two years [80].
While the estimated size of digital data which is generated up to the year 1999
was around 12 exabytes [118], the digital universe surpassed the 1.8 zettabytes by
2011 [91] with an increase of 150x and it is expected to bypass the 175 zettabytes by
2025 [130]. The current and future scale of data stress current management tools
and require scalable infrastructures and solutions for efficient data management.

Velocity. The volume of the data does not capture its rate of generation or analysis.
Many types of data, especially sensor data, are volatile and should be processed on
the fly. For instance, 60% of valuable sensory data loses value in milliseconds [292].
The speed of which data is generated, captured, and processed characterize its ve-
locity. For example, millions of cameras are deployed in large cities around the world
generating video streams that should be processed in real-time [311]. Moreover, a
self-driving car sends around one gigabyte of data per second to cloud servers to be
processed and send back the control signals [1, 145]. This opens the door for a new
type of data processing, identified as stream processing, where achieving low-latency
is crucial.

Variety. Beside its volume and velocity, data have heterogeneous types and formats.
This heterogeneity is the result of the diverse sources that generate the data. From
Internet-based services and activities such as social media, e-commerce, maps ser-
vice, and video-on-demand to scientific sensors and simulations. Unstructured free-
form text, multimedia files, and geospatial data are some examples of different types
of data. This variety of data formats imposes challenges for analytics frameworks
as data from different sources should be analyzed collectively.

2.1.2 Data temperature

Data access frequency, usually associated with data temperature [168, 195, 32, 230], influ-
ences how data is managed. Data can be classified into three main categories depending
on its temperature.

Cold data. Data that are rarely accessed are described as cold data. This category
includes archived data, backups, and data stored in peer-to-peer networks among
others. High latency and low throughout can be tolerated when accessing cold data;
for example, these data may take days or hours to be retrieved, as it usually ends
up stored on tapes or Blu-ray discs [81, 15].

12



2.2. DATA-INTENSIVE APPLICATIONS

Hot data. The extreme opposite of cold data. These data are frequently accessed. For
instance, a breaking news post on social media. In general, those data are stored in
high-speed storage devices (e.g., SSDs, DRAM, etc.) to ensure fast data access [230].

Warm and lukewarm data. This category falls in-between the previous two ones.
These data have a request rate lower than that of hot data, however, it should
be retrieved in acceptable time compared to cold one [168, 195]. For instance, pho-
tos and videos that are not popular but still requested by users can fall in this
category.

2.1.3 Data access patterns

Data are created for various reasons and consumed in different ways. This will impact
when and how much data is accessed. Hereafter, we list the four possible patterns for
data accesses.

Write-once read-many. As the name implies, once these data are stored, they will not
be modified but they will be read frequently. For instance, this category includes in-
put data for analytics frameworks and service images (i.e., Virtual Machines Images
and Container Images).

Write-once read-once. This category usually represents temporary and intermediate
data that are read once after being created and then discarded. For instance, partial
results of multi-stage computations (e.g., Hadoop MapReduce) are stored as inputs
for later stages and deleted once read and processed.

Write-many read-once. This category usually includes data that is used to ensure
fault tolerance during the execution of jobs. For instance, checkpointing data in
HPC is written many times and read once in case of failure.

Write-many read-many. This category includes the remaining access patterns. Essen-
tially, it describes data that could be written, read, updated, and deleted frequently.
For example, the state of online multi-player games.

2.2 Data-Intensive Applications

Nowadays, data plays a central role in many businesses as well as scientific applications.
Hereafter, we list some examples of commercial and scientific applications that are char-
acterized as data-intensive applications.

2.2.1 Internet-based applications

Google. Google has 90% of the search engine market share worldwide, while serving
billions of queries every day [21, 2]. Moreover, Google relies on a globally distributed
database, Spanner [58], to support its advertising backend, which accounts for the
largest share of Google total revenue. Furthermore, Google runs complex learning
algorithms to build its recommender system for YouTube in order to improve users’
experiences [59].
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Facebook. With more than 2 billion active users per month, writing posts, uploading
photos, and sending messages; Facebook is the largest social network platform
nowadays. To satisfy the timely response time to users’ interactions, Facebook
relies on a homegrown storage system, TAO, that runs on thousands of machines,
provides access to petabytes of data, and handles millions of requests per second [43].
Moreover, Facebook runs thousands of analytical queries per day [277] to show
relevant content and personalized advertisements to its users.

2.2.2 Scientific applications

Large Hadron Collider (LHC). The largest machine in the world, the LHC is built by
the CERN (European Organization for Nuclear Research) to advance the research
in particle physics. The performed experiments generate a tremendous amount of
data that need to be stored and analyzed. As of the beginning of 2019, CERN
manages about 330 petabytes of data [65].

Square Kilometer Array (SKA). The SKA project [274] is a set of radio telescopes to
push the boundary of our understanding of the universe; from galaxies, cosmology,
dark matter, and dark energy to search for extraterrestrial life. When completed,
the aggregated data from these telescopes will attend 7.5 petabytes per second [42].
Many challenges will be raised, not only for storing the data but also for transferring
and analyzing it.

2.3 Conclusion

Our digital universe is expanding by the generation of tremendous and heterogeneous
amount of data. The data is produced from a variety of sources with distinct character-
istics. This trend gives the opportunity for scientific research to better understand the
world, and for business to improve the quality of our lives. However, getting the most
benefit of these data poses many challenges that stress the need for large-scale infrastruc-
tures and systems. In the next chapter (Chapter 3), we review the clouds as an enabling
infrastructure for Big Data analytics. In Chapter 4, we present the storage systems and
analytics frameworks for Big Data processing.
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In his speech at MIT in 1961, John McCarthy envisioned computing as a kind of
Utility Computing that could be used by the public as “Pay and Use” [95]:

“If computers of the kind I have advocated become the computers of the future, then
computing may someday be organized as a public utility just as the telephone system is
a public utility... The computer utility could become the basis of a new and important
industry.”
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Cloud can be considered as the realization of McCarthy vision in this century. Though
virtualization technologies – which are the main technologies behind the cloud – are
developed in the 70s, commercial clouds were popularized in the late 2000s by large
enterprises, such as Amazon, Microsoft, and Google, that build and start to offer cloud
services. This chapter reviews the basics of clouds and their various models.

3.1 Cloud Computing: Definition

There are many cloud computing definitions available in the literature. One of them is
proposed by the National Institute of Standards and Technology of the U.S. Department
of Commerce [272]:

“The Cloud Computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”

In other words, cloud computing is a computing model that provides remote access
to compute, storage, and networking resources that are managed by a cloud provider.
These resources can be instantaneously accessible, scalable, elastic, and billed on a pay-
as-you-go pricing model [140, 127].

3.2 Cloud Architecture: From Centralized Data Cen-
ters to Massively Distributed Mini Data Centers

Clouds architecture has been evolving over the years: from a single data center in a single
geographical area, to massively distributed mini data centers that are distributed over
the world. In this section, we categorize clouds architecture into four categories.

3.2.1 Single “region” clouds

In its basic form, cloud services can be delivered by a single data center. A data center
is a building hosting all the computation, storage, and networking resources, in addition
to non-computation ones such as generators, cooling systems, and batteries. In data
centers, computing and networking equipment are housed within racks. A rack is a group
of 30-40 servers connected to a common network switch. This switch is called the top-
of-rack (TOR) switch. The top-of-rack switches from all the racks are interconnected
through one or more layers of higher-level switches (aggregation switches and routers) to
provide connectivity from any server to any other server in the data center. Typically,
the top-of-rack and higher-level switches are heavily oversubscribed [8, 104, 146, 232, 53].

To tolerate a complete data center failure (for example, due to generators failures),
cloud providers build two or more data centers close to each other in what is called Avail-
ability Zones (AZ) [27, 293, 100]. Data centers in each AZ are equipped with independent
power, cooling, and networking facilities.

To provide more resiliency, an AZ has at least another AZ that is geographically
located within the same area, linked by highly resilient and low-latency private fiber-
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optic connections. However, each AZ is isolated from the others using separate power
and network connectivity to minimize the impact to other AZs in case of complete AZ
failure. The collection of AZs that are geographically located close to each other is called
a region [27, 293, 100].

3.2.2 Geo(graphically)-distributed clouds

Geo-distributed clouds are the set of regions that can be managed collectively (e.g., by a
single cloud provider). These regions are usually spread around the world, to provide a
better quality of service, conform to privacy regulations, and provide higher catastrophic
fault tolerance. However, in the case of network partitioning, every region can act inde-
pendently of the others. For example, major cloud providers such as Microsoft Azure,
Amazon AWS, and Google Cloud have 54, 21, 19 geographic regions, respectively [296,
26, 101]. Usually, these regions are connected using wide area network (WAN). How-
ever, some large Internet companies are even building their own private WAN such as
Google [137] and Microsoft [115].

As data centers are spread in different regions, the connections between them are
heterogeneous (in terms of bandwidth and latency). For instance, the bandwidth in-
between 11 sites in Amazon AWS varies by up to 12x [119]. This heterogeneity is one of
the main challenges towards realizing efficient geo-distributed data management.

3.2.3 Federated clouds

Federated cloud is a model that offers cloud services from different, possibly public and
private, vendors in a transparent way [44, 163, 302]. Federated clouds can be also referred
by Multi-Cloud [163] and Inter-Cloud [44]. Federated clouds provide high scalability and
cost-efficient workload execution, as well as, they lower the adverse effects of vendor lock-
in. However, the challenge to realize this model is to provide interoperability between
the different providers to allows seamless integration and migration of users’ services.
In contrast to geo-distributed clouds, federated clouds belong to different administrative
entities. Nevertheless, federated clouds could be geographically distributed.

3.2.4 Edge computing

Edge computing is a recent computing paradigm that pushes the virtualized computation
and storage resources to the edge of the network [262, 261, 294, 194]. For instance, Micro
data centers [30, 77], Cloudlets [253], and Point of Presences (PoPs) are some examples
of Edge-servers. This geographical proximity provides local and fast data access as well
as it enables in-place data processing. Therefore, Edge can be leveraged to run latency-
sensitive applications such as smart city applications, video processing applications, and
augmented reality applications [304, 125, 243, 280]. Moreover, processing data at the
Edge can greatly reduce the network traffic to the central cloud and improve the perfor-
mance [229]. For instance, running smart city applications at the Edge shows to be up
to 56% more efficient compared to clouds [243].

A similar concept to Edge computing is Fog computing which was formalized by
CISCO in 2012 [40]. Even though most of the work in literature uses the two words
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interchangeably [262, 261, 114, 294, 194], the OpenFog Reference Architecture [207] dis-
tinguishes Fog computing as a hierarchical infrastructure that, in addition to the Edge
and the cloud, leverages all the resources in-between (in the core of the network).

3.3 Service Models

The following three service models have been extensively used to categorize services
provided by clouds [139]:

Infrastructure-as-a-Service — IaaS. This is considered as the most basic cloud model.
It provides users with computing, storage, and networking resources. For instance,
users rent computing resources in the form of virtual machines. These VMs are
launched from custom images and have specific capabilities depend on the number
of CPUs, memory size, locally-attached disks, etc. Moreover, storage is available
for users through object-store interfaces (e.g., REST). This model is suitable for
experienced users who want to have full control over their execution environments.
Elastic Compute Cloud (EC2) [23], Simple Storage Service (S3) [28], and Elastic
Load Balancing (ELB) [24] are some examples of computing, storage, and network-
ing services, respectively, provided by AWS IaaS.

Platform-as-a-Service — PaaS. This model provides computing platforms which al-
low users to run their application without the complexity of maintaining the under-
lying infrastructure. This level of services allows users to concentrate only on the
application while abstracting the complexity of managing the underlying hardware
and software layers. This model includes programming language execution environ-
ments, databases, web servers, etc. For instance, Google App Engine is a PaaS that
offers hosting for web applications in Google-managed data centers. Another exam-
ple of PaaS is Amazon Elastic MapReduce (EMR) [25], where users are provided
with a ready to use installation of Hadoop framework to run their MapReduce jobs.

Software-as-a-Service — SaaS. This is the highest level in the cloud service model.
In this category, the cloud provider takes control of the infrastructure and the
platforms to provide ready-to-use software. The main advantage of this model
is providing easy access for end users and ensuring minimum configurations. For
instance, Microsoft Office 365 [190] and Google suite (Google Doc, Google Sheet,
Google Slides, etc.) [90] are well-known examples of SaaS.

3.4 Deployment Models

The following three models can characterize cloud deployment [68]:

Public clouds. Public clouds are the most common model of cloud computing. Cloud
providers offer their resources on-demand in a pay-as-you-go model to all users [127].
Cloud users can lease and access these resources over the Internet.
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Private clouds. Private clouds are built to deliver services for a single organization. In
this case, it is the organization responsibility to manage the hardware as well as
the cloud software manager (or delegating them to a third party). This model is
preferable for organizations that want to have full control over the infrastructure
and software, usually for high security and privacy guarantee. However, private
clouds might suffer from limited scalability and lower resource utilization as the
workloads change over time.

Hybrid clouds. In this model, both public and private clouds are used at the same
time. The common scenario for hybrid clouds is when an organization deploying its
private cloud wants to offload some burst less-sensitive computations to the public
cloud. Hybrid clouds could be considered as a special case of federated clouds [302],
therefore, compatibility issues represent the main challenge to be considered to
enable efficient resource migration between the two clouds.

3.5 Virtualization as Cloud-enabling Technology

Clouds services run in virtualized environments, usually as Virtual Machines or contain-
ers. Virtualized environments greatly reduce the overhead of service management, provide
isolation between different tenants, and increase resource usage by means of consolidation.

3.5.1 Full virtualization: Virtual machines and Unikernels

Virtual Machines

A virtual machine (VM) is a computer program capable of running an operating system
and applications [265]. It runs on top of a physical machine but gives the illusion of a sep-
arate physical machine to the user. Therefore, multiple VMs can share the same physical
machine. The software responsible for managing resources of VMs in the same physical
machine is called a virtual machine monitor or hypervisor (e.g., Xen [299], KVM [150],
Microsoft Hyper-V [191], VMware vSphere [287], etc.).

A VM is characterized by the number of vCPUs (virtual CPUs) and memory size,
in addition to the disk image. A cloud user can choose the VM type (according to the
number of vCPU and memory size) from a catalog provided by the cloud provider with a
different cost for each type. The disk image of the VM (the VM image) is usually provided
by the user and it contains the operating system and application-specific software.

Unikernels

A unikernel [278, 185] is a specialized, single-address-space machine image constructed
by using library operating systems such as MirageOS [185], ClockOS [188], OSv [155],
Tinyx [186] etc. A unikernel consist of a single process which (generally) runs one ap-
plication. Thanks to this single-minded design, unikernels offer fast boot time, high
performance, low memory footprint, and reduced attack surface [278, 185, 186]. Also,
like Virtual Machines, unikernels can run directly on a hypervisor.

Recently, unikernel are gaining popularity in cloud [278, 185, 188, 155] especially for
mission-specific applications such as Network Function Virtualization [185, 188]. How-
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ever, there are several challenges which hinder the wide adoption of unikernels in clouds,
especially the complexity of building and packaging them and the difficulty of porting
existing applications [206].

3.5.2 Operating-System-level virtualization: Containers

The introduction of lighter virtualization technologies has been motivated by the high
overhead encountered with VMs, as numerous studies have shown [257, 85]. Containers,
Zones, or Jails are a form of Operating-System-level virtualization that runs directly on
top of the host machine Operating-System. This eliminates the need for a hypervisor
and reduces the size of their disk images which results in their lightweight overhead [257].
Treating a container as a lightweight VM is not accurate; for example, complete emulation
of different hardware architecture is not possible with containers. Linux cgroups and
namespaces are the underlying Linux kernel technologies used to isolate, secure, and
manage containers [257]. While these technologies have been included into the Linux
kernel for over a decade [257], the widespread deployment of containers starts for real after
the emergence of Docker [72]: Docker introduced a layered file system (that represents
the container image) as well as many software engineering benefits to ease container
management.

3.5.3 On the role of service images in the cloud

All services in the cloud are launched from a service image; a virtual machine image (VMI)
or a container image. The service image should be available on the host machine to run
the service, otherwise, it should be transferred from a central image repository. Such
an image includes the software program of the services as well as all its dependencies
including the operating system itself in case of VMIs. Therefore, these images could
be large in size; up to one gigabyte for a container image [109, 17] and up to tens of
gigabytes for a VMI [35, 258]. Moreover, large number of images are now hosted in
clouds, for instance, at least 2.5 million images [74] are stored in Docker Hub [73], while
AWS has more than 20,000 different public images1.

Many software solutions are available to build these images. These solutions, besides
the construction of the required image, focus on the easiness of the operation, the diversity
of output image formats, and the reproducibility of the build process. For instance,
Docker [72] can create container images from a dockerfile that describes the building
instructions. Packer [215], Oz [214], and Kameleon [249] are some examples of solutions
for building VM images.

3.6 Public Cloud Offerings

Public cloud offerings are exploding over the years. Nowadays, dozens of public cloud
providers are offering a wide range of services. Hereafter, we list three of the most popular
public cloud providers.

1We obtained the number of images from Amazon EC2 Dashboard on Jul. 26th, 2019.
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Amazon Web Services (AWS). Initially launched in 2006, Amazon Web Services is
a collection of IaaS and PaaS services. The first two services were Elastic Cloud
Computing (EC2) [23] and Simple Storage Service (S3) [28] that provide on-demand
computation and storage, respectively. Now, AWS offers include dozens of other ser-
vices such as Elastic MapReduce (EMR) [25], Elastic Container Service (ECS) [13],
etc. As of 2017, AWS has a market share of 34% of cloud offers, more than the
three closest competitors combined (i.e., Google, Microsoft, and IBM) [244].

Google Cloud Platform (GCP). Initially released as a PaaS (i.e., Google App En-
gine) in 2008, now, GCP offers a variety of IaaS and SaaS services. Kubernetes
Engine [103] (for container orchestration) and Cloud BigTable [54] (for NoSQL
databases) are some examples of Google cloud offers. The offered cloud computing
services run on the same infrastructure that Google uses internally for its end-user
products, such as Google Search and YouTube.

Microsoft Azure. Microsoft Azure, officially released in 2010, provides IaaS, PaaS,
and SaaS cloud services. For instance, Azure Data Lake [64] (for scalable data
storage) and Azure HDInsight [112] (for Big Data processing) are among the services
provided by Azure. Currently, Azure has the largest public cloud infrastructures
with 54 regions around the world counting for more than 140 Availability Zones
(each containing at least two data centers) [296].

3.7 Cloud Management Solutions

Several management solutions have been developed to facilitate the orchestration, the
configuration, and the automation of virtual machines and containers in virtualized clus-
ters. In this section, we list some popular frameworks while presenting in detail Open-
Stack [209] as the de-facto platform for IaaS clouds and Kubernetes [159] as the most
popular container orchestration framework.

OpenStack. OpenStack [209] is an open-source IaaS manager for public and private
clouds, licensed under Apache 2.0. OpenStack aims at providing a massively
scalable and efficient cloud solution for corporations, service providers, small and
medium enterprises, and researchers. OpenStack consists of 5 core projects; Nova
provides access to on-demand, elastic, and scalable virtual machines similar to Ama-
zon EC2. Glance is the component responsible for the management of the virtual
machine images, however, it relies on a backend storage system for the actual storage
of these images. Swift is the distributed eventually-consistent object-store project
for OpenStack. It is also used as a backend for Glance [57]. Neutron is respon-
sible for the networking part while Keystone represents the identity management
component. OpenStack was born in 2010 as a joint project of Rackspace Hosting
and NASA. Currently, it counts more than 500 collaborators. Due to its success,
OpenStack is used by many enterprises (e.g., Walmart and Verizon), universities
and research centers (e.g., CERN and University of Edinburgh), as well as govern-
mental entities (e.g., UK Civil Service and France’s Interior Ministry). Moreover,
at the time of writing, 18 public cloud providers use OpenStack to empower their
infrastructures [273].
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Docker. Docker [72] is a popular opens-source container management framework. Docker
Engine orchestrates the execution of containers on a single machine. Also, Docker
provides an image service (i.e., Docker registry) to management the container
images. Docker has the Swarm mode to deploy containers on a cluster of ma-
chines [268]. However, Docker Swarm mode is surpassed by Kubernetes described
next.

Kubernetes. Kubernetes [159] is open-source software for deploying and managing con-
tainers, including Docker containers, at scale. Kubernetes works by managing a
cluster of compute instances and scheduling containers to run on the cluster based
on the available compute resources and the resource requirements of each container.
Containers are grouped into pods, the basic operational unit for Kubernetes. Con-
tainers belonging to the same pod are deployed to a single machine sharing the IP
address and hostname. Pods abstract network and storage away from the under-
lying container which facilitates the management of the containers (e.g., migration
and scaling). Kubernetes supports efficient management of multiple clusters. These
clusters can span hosts across public, private, or hybrid clouds.

OpenNebula. OpenNebula [208] is an open-source cloud computing platform which
provides an enterprise IaaS ready deployment for private clouds. It fully supports
efficient management of virtualization over computing, storage, and network re-
sources. OpenNebula design aims to provide a standardization of IaaS clouds with
full support of interoperability and portability e.g., OpenNebula supports several
cloud interfaces and hypervisors. OpenNebula started as a research project in 2005
and the first public release was in 2008.

Eucalyptus. Eucalyptus [204, 79] is an open-source cloud manager that provides full
compatibility with AWS services for building private and hybrid clouds. This pro-
vides a seamless migration of services between private and the public AWS cloud.
Organizations can use AWS-compatible tools, images, and scripts to manage their
own on-premises IaaS environments. The Eucalyptus started as a research project
at University of California in 2007. After two years, the project was commercialized
through Eucalyptus company.

3.8 Conclusion

Clouds provide a large-scale pool of resources that can be leveraged to store and process
data. Data analytics services in clouds are leased as Virtual Machines or containers in
virtualized environments to allow management flexibly and resource efficiency. While
important, virtualization poses a new challenge in the Big Data era, which is related to
the management of VMIs and container images. In addition to their sizes, which could be
infeasible to store locally (especially in Edge-servers), retrieving and placing these images
is rather important as it has a direct impact on the performance of service provisioning.
Hence, in Part II, we present our contribution towards efficient service provisioning in
distributed clouds.
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In his last talk, Jim Gray described how using the Big Data to extract useful in-
formation and push the boundary of science as a paradigm shift [113]. To enable this
paradigm shift, there is a call for new data management systems, in particular, storage
systems that can store and mange this tremendous amount of data at scale and data
analytics frameworks that can facilitate large-scale data processing. In this chapter, we
discuss current state-of-the-art distributed storage systems including the ones focusing
on services images and input data of data-intensive applications and then present the
main frameworks to enable fast and efficient Big Data analysis.

4.1 Design Objectives of Distributed Storage Systems

Distributed storage systems (DSSs) are designed to aggregate a large number of nodes
to give the impression of a single large machine. However, storage systems have different
design objectives. For instance, archival systems focus on durability at low cost while
caching systems aim for high performance and availability. These design objectives are
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conflicting and cannot be achieved at once. For example, data consistency and data
availability cannot be guaranteed at the same time in case of network partitioning, which
is known as the CAP theorem [41]. In this section, we present the main objectives when
designing distributed storage systems. As our goal is to achieve scalable and efficient
data management in the large-scale clouds where ensuring data availability is a must, we
dedicate the next section to discuss data availability and highlight the performance and
storage cost of the main techniques used to ensure data availability.

Performance. By performance, we refer to the performance of data access (i.e., read
and write). Performance could be measured by the latency or the throughput (byte
per second, request per second, etc.) of accessing the data. For example, in-memory
caching systems aim for low access latency while data analytics backends storage
optimize data access throughput.

Scalability. Scalability is the property of a system to handle a growing amount of work
by adding resources to the system [39]. Scalability could be horizontal by adding
new machines to the system, or vertical by making machines more powerful.

Data availability. Data availability means that data is available and accessible when
requested (read, written, updated). Data could become unavailable due to hardware
or software errors that render the data partially or completely inaccessible for a
period of time. When a piece of data is updated, it also becomes unavailable until
all replicas are updated (in case a strong consistency is applied, see below).

Data durability. Data durability refers to the long-term survival of the data. Data
durability is particularly important in archival systems where the data should be
stored forever. Similar to data availability, data durability is mainly impacted by
software bugs and hardware failures that may result in permanent data loss.

Storage cost. Storage cost represents the total physical size of the actual stored data
including the metadata, replicas, etc. For instance, lossless compression can be
used to reduce the data size. Deduplication is another example of data compression
technique. Usually reducing storage cost incur extra computation overhead, and its
effectiveness depends on the type of the data.

Data consistency model. Data in a storage system could have different consistency
models. For instance, strong consistency means that replicas of the same data are
always perceived in the same state, however, this results in limited availability,
performance, and scalability. Eventual consistency, on the other hand, allows some
temporal inconsistencies at some points in time but ensures that all replicas will
converge to a consistent state in the future [67, 166]. Other consistency models are
also available (e.g., weak consistency, causal consistency, etc.) however, they are
out of the scope of this thesis.

4.2 Data Availability in Distributed Storage Systems

Data should be available to be processed, however, with the scale of current DSSs, fail-
stop failures and transient failures are common [98, 88, 106, 136, 96]. These failures,
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that might have either software or hardware root, impact the availability of data. In this
section, we present two widely used techniques to ensure data availability in DSSs.

4.2.1 Replication

Replication is simply repeating the original data; the same piece of data is copied (repli-
cated) to distinct failure domains (e.g., disks, machines, racks, data centers, regions, etc.)
in order to tolerate maximum resource unavailability. For simplicity, we refer here to
any of these failure domains as nodes. The replication of data could be performed syn-
chronously (i.e., a piece of data is only available once all its replicas are persisted, or at
least cached, in the DSS) or asynchronously (lazy replication).

Recovering a lost replica can be performed by re-replicating any of the surviving
replicas. This comes with a network and (disk) read cost equals to the data size, and
has a negligible CPU overhead. Moreover, under failure, the storage system can still
serve users’ requests by directing the requests to a life replica. This introduces almost
no overhead except for the failure detection time of the failed node. Besides, replication
can provide efficient data access, in terms of latency and/or throughput, under high data
request rates. Users’ requests could be served by any replica to balance the load between
nodes. Selective replication, which assigns distinct replication factors for each object, is
employed to increase the performance of data access for popular data by increasing their
number of replicas [308].

On the other hand, replication has a high storage overhead, for example, a 200%
storage overhead is needed to maintain 3 replicas, that can tolerate two simultaneous
failures. Moreover, replication can impact the write latency of data as the write request
should wait for all the replicas to write the data before being considered successful. This
is important to ensure the consistency of the data. However, maintaining consistency is
usually expensive and limit the scalability of the system, especially for applications with
heavy writes pattern.

Replication has been employed as the main redundancy technique in many DSSs [263,
291, 98] for two main reasons: (1) its simplicity (and thus less error-prone implementa-
tions) and (2) as the storage is considered a cheap resource compared to computation
and network (thus the overhead is acceptable).

4.2.2 Erasure coding

Erasure coding (EC) is a data redundancy technique that can provide the same fault tol-
erance guarantee as replication but with lower storage overhead [247]. Erasure codes have
been widely used in various data storage systems, ranging from disk array systems [48],
peer-to-peer storage systems [290], distributed storage systems [263, 291, 86], to cloud
storage systems [78, 195], and in-memory caching systems [312, 230, 256, 307].

Reed-Solomon codes (RS) [239], and more generally Maximum Distance Separable
(MDS) codes [184], are the origin of erasure codes, and therefore, they are the most
deployed codes in current systems. RSpn, kq splits the piece of the data to be encoded
into (n) smaller chunks called data chunks, and then computes (k) parity chunks from
these data chunks. This collection of (n ` k) chunks is called a stripe, where n ` k is
the stripe width. In a system deploying an RS code, the (n ` k) chunks belonging to a
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stripe are stored on distinct failure domains (for similar reasons as replication, see the
previous section). MDS codes (e.g., RS codes) have the property that any (n) out of
(n ` k) chunks are sufficient to reconstruct the original piece of data, thus, MDS codes
can tolerate (k) simultaneous failures.

For example, suppose the case for RSp2, 2q where the two data chunks (d1 and d2)
have the values of a and b respectively. The two parity chunks (p1 and p2) could have the
values of p1 “ a ` b and p2 “ a ` 2b. In this case, d1 could be recovered by computing
d1 “ p1 ´ d2 and d2 could be recovered by d2 “ p2 ´ p1.

Figure 4.1 depicts the workflow of EC; encoding is the operation of generating the
parity chunks where decoding is the reconstruct operation. Encoding and decoding oper-
ations are considered CPU intensive.

RS codes present a trade-off between higher fault tolerance and lower storage overhead
depending on the parameters (n) and (k). RSp6, 3q and RSp10, 4q are among the most
widely used configurations.

EC vs. replication

Erasure codes can achieve high reduction in storage overhead compared to replication.
For instance, RSp6, 3q has a storage overhead of 50% (for each piece of data that is
split into 6 data chunks, 3 other parity chunks are needed) and delivers the same fault-
tolerance as 4-way replication that incurs a storage overhead of 300% (for each piece
of data, three other identical replicas are needed). On the other hand, in addition to
CPU overhead, EC brings considerable network and disk overhead in case of failure (i.e.,
data unavailability or data loss). In particular, to reconstruct a missing chunk, n chunks
(original and/or parity) should be read (from disk) and transferred over the network.
Therefore, the reconstruction cost of a chunk is n times its size in terms of (network)
data transfer and (disk) read.

EC families

Besides Reed-Solomon (RS), we present here some example of erasure codes that are
widely deployed in storage systems. Local Reconstruction Codes (LRCs) are also well-
known codes that have been deployed in production clusters [123, 252]. LRCs split the
data chunks into m groups, one local parity chunk is computed for each group in addition
to m global parity chunks. Parity chunks are usually computed using RS codes. The
chunks of each group are often sufficient to recover a missing chunk of the same group,
otherwise, global parities are used. Therefore, LRCs reduce the reconstruction overhead
of missing chunks compared to RS codes in terms of network bandwidth and disk I/O as
fewer chunks are needed. However, LRC codes are not MDS codes, and therefore, cannot
tolerate arbitrary failures. Regenerating codes achieve an optimal trade-off between the
storage overhead and the amount of data transferred (repair traffic) during the repair
process [69]. They are traditionally employed in peer-to-peer systems, and later optimized
to minimize disk I/O in distributed storage systems [233]. XOR codes are simple and
fast codes that create one parity chunk which is the bitwise xor of all the data chunks.
However, only one data loss can be tolerated. Finally, erasure codes can be seen as a
software RAID [48], for instance, RS codes are used to implement RAID-6.

26



4.3. STATE-OF-THE-ART DISTRIBUTED STORAGE SYSTEMS

P1 P2D1

Data
Encoding

D2 D3 D4

Data
Decoding

Figure 4.1: Erasure coding: encoding and decoding with RSp4, 2q. The original piece of
data is split into 4 data chunks, and 2 parity chunks are computed.

4.2.3 Data deduplication: Optimizing storage cost under avail-
ability constraints

Direct application of redundancy techniques discussed in the previous sections could
result in high storage overhead. However, data of the same applications may exhibit high
similarities (e.g., VMIs and container images) and this introduces new opportunities to
reduce their sizes without impacting the availability of the storage system. Deduplication
technique can greatly reduce the storage overhead while maintaining the same level of
availability of data. For instance, deduplication has been adapted in archiving systems
where datasets contain a lot of duplicates [321].

Deduplication remove duplicated segment of data from a dataset, by keeping only
unique segments. Each piece of data is represented by a list of pointers to the unique
segments in order to reconstruct it. Figure 4.2 depicts the deduplication process on a
dataset.

Deduplication can be applied on the binary-level or object-level. The binary-level
treats the data as a raw array of bytes and creates segments from this array (could have
the same size or not). On the other hand, the object-level treats each object of the data
set as a segment of data.

The most common method to identify identical segments is the use of cryptographic
hash functions. Segments that have the same hash digest are considered identical. Even
though the probability of hash collision is very small, but it is not zero. Therefore,
identical segment comparison (when their hash digests are matched) should be used to
avoid data corruption. Moreover, hash functions are CPU intensive, therefore, to enable
online deduplication, dedicated computation servers or devices could be used.

Deduplication is often paired with data compression for additional storage saving:
Deduplication is first used to eliminate large segments of repetitive data, and compression
is then used to efficiently encode each of the stored segments (chunks).

4.3 State-of-the-art Distributed Storage Systems

As the focus of this thesis is scalable and efficient Big Data management in distributed
cloud, we list here state-of-the-art storage systems that are widely used to store service
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Figure 4.2: Deduplication: an example dataset where deduplication reduces its size from
18 chunks to 5 chunks plus the metadata.

images or employed as underlying storage system for data analytics. In particular, we
present first OpenStack Swift [210] and HDFS [263] which are the most deployed storage
systems for image storages and data processing, especially in private distributed clouds.
Then, we describe two representative storage systems in public distributed clouds (i.e.,
Amazon S3 [28] and Apache Cassandra [166]). We also discuss new evolving storage
systems which are optimized for high speed storage devices (i.e., DRAM) including Al-
luxio [11] and Redis [238]. Finally, we present a new emerging file system that can be
used in geo-distributed deployment, IPFS [38].

OpenStack Swift

OpenStack Swift [210] is a cloud-based distributed object store. It provides a simple
key/value dictionary interface for accessing the data. To achieve high scalability, Swift
relies on eventual-consistency as consistency model. Swift is optimized for storing un-
structured large binary files which have a write-once read-many access pattern (e.g., VM
images, log files, backups, multimedia files, etc.). For instance, Swift is used as a backend
store for the image service in OpenStack (Glance) [57]. Swift consists of a set of proxy
nodes and a set of object nodes. The object nodes are responsible for the data storage
while the proxy nodes receive users’ requests and forward them to the appropriate object
node. Swift organizes objects into containers, where a container is a logical grouping of a
collection of objects. Access policies and redundancy level (i.e., replication and EC) are
applied on the container level. Swift supports geographically distributed clusters, thanks
to the read and write affinity properties: regions can be statically prioritized to favor
read and write from/to “nearby” sites (i.e., normally sites that have a higher bandwidth
between them).

Hadoop Distributed File System (HDFS)

HDFS [263] is a distributed file system that is designed to store multi-gigabytes files
on large-scale clusters of commodity machines. HDFS is optimized to access large files.
This is achieved by relaxing the POSIX interface (e.g., random write inside a file is not
supported). To ease the management of its data, files stored in HDFS are divided into
blocks, typically with a size of 64 MB, 128 MB, 256 MB, etc. HDFS employs replication
to ensure data availability in case of failures. By default, each block is replicated on three
different machines, with one replica in another rack. HDFS is used as backend storage for
analytics frameworks (e.g., Hadoop [19], Spark [20], and Flink [18]) to store input and
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output data. HDFS consists of a NameNode and a set of DataNodes. The NameNode
(NN) process is responsible for mapping each file to a list of blocks and maintains the
distribution of blocks over the DataNodes. The DataNode (DN), on the other hand,
manages the actual data on its corresponding machine.

AWS Simple Storage Service (S3)

AWS S3 [28] is a cloud-based object storage that is part of the IaaS offers of Amazon.
S3 has a key/value interface for accessing the data. Similar to OpenStack Swift, S3 uses
eventual consistency to achieve high data availability at scale. Virtual Machine Images
and analytical datasets are among the data that are usually stored in S3.

Cassandra

Cassandra [166] is a highly available, scalable, distributed storage system which was
introduced by Facebook. Cassandra is designed for managing large objects of structured
data spread over a large amount of commodity hardware located in different data centers
worldwide. For its data model, Cassandra uses tables, rows, and columns, but unlike a
relational database, the names and format of the columns can vary from row to row in the
same table. However, the stored values are highly structured objects. Such a data model
provides great abilities for large structured data, as it offers a more flexible yet efficient
data access. Moreover, Cassandra provides a tunable consistency model per operation.

Alluxio

Alluxio [11] (successor of Tachyon [170]) is an in-memory caching solutions for Big Data
analytics which is employed in modern data-intensive clusters. Alluxio provides data
orchestration for analytics and machine learning applications in the cloud. In essence,
Alluxio is a middleware that sits on top of a disk-based storage system (e.g., S3, HDFS,
etc.) and provides fast data access (e.g., through memory data locality) to accelerate the
execution of computation workloads.

Redis

Redis [238] is an open-source in-memory distributed key-value store. Redis is one of the
most popular NoSQL databases in the industry. It provides low access latency for small
objects. Redis supports a richer interface than a simple key/value store. For example,
lists, sets, hash tables, streams, and geospatial data are supported. Redis uses replications
for higher data availability. Moreover, Redis supports optional durability by persisting
data to disk.

InterPlanetary File System (IPFS)

IPFS [38] is a peer-to-peer distributed file system that is designed for massively dis-
tributed environments. IPFS stores blocks of data indexed by their fingerprint (i.e.,
cryptographic hashes) and therefore can perform deduplication at the complete file sys-
tem level. Furthermore, IPFS exchanges chunks using a BitTorrent [56] inspired protocol,
named BitSwap. However, to reduce the complexity of finding the optimal plan to pull
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a file – due to the large number of replicated chunks – IPFS simply pulls chunks from all
available sites and therefore introduces a high network overhead.

4.4 Data Analytics Frameworks: Turning Volumes into
Value

To extract knowledge from Big Data, data processing frameworks are employed to run
analytics jobs on it. In this section, we first present the key features of data analytics
frameworks and then list some of the most widely used open-source frameworks.

4.4.1 Key features of data analytics frameworks

Distributed analytics frameworks are designed to enable running data-intensive applica-
tions on large-scale infrastructures. Hereafter, we present the key features that charac-
terize these frameworks.

Performance. Analytics frameworks try to achieve high performance, however, perfor-
mance metrics differ depending on the type of computation. For instance, batch
processing frameworks focus on optimizing the throughput, while interactive and
streaming processing aim to minimize the response time. Other metrics such as
resource utilization and energy efficiency can also be used as performance metrics.

Scalability. This means that applications are parallelized into possibly thousands of
tasks that are distributed and concurrently executed in a cluster.

Programming model. Analytics frameworks provide users with easy-to-use program-
ming model and primitives. Programs written in these frameworks are usually se-
quential, however, they are automatically parallelized before being executed. This
facilitate the adoption of these frameworks by developers.

Fault tolerance. Failures are common at large-scale, therefore, having tasks killed dur-
ing the execution is inevitable. Handling failures gracefully while maintaining the
continuity of the processing is, therefore, essential.

Generality. Traditionally, analytics frameworks focus on batch processing. However,
currently, analytics frameworks support many other applications such as stream
processing, SQL queries, graph processing, and machine learning applications.

4.4.2 State-of-the-art data analytics frameworks

In this section, we describe first the original MapReduce programming model [66, 141],
then its open-source implementation, Hadoop [19], which is considered as the de-facto
framework for data analytics. Next, we review Spark [20] and Flink [18], two analytics
frameworks that support a wider range of applications.
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MapReduce

MapReduce is a programming model – originally popularized by Google [66] – to pro-
vide an easy-to-use and scalable parallel programming model [141]. MapReduce applies
sequential functions provided by the user (i.e., map and reduce) on a dataset in paral-
lel. The MapReduce framework is responsible for task creation and scheduling, handling
failures, and managing the computation and storage resources. Even though the MapRe-
duce model is independent of the underlying hardware architecture (e.g., it could be
implemented as multi-threading on top of shared memory), it has mainly employed for
processing large datasets stored in distributed file systems (DFSs), e.g., Google File Sys-
tem (GFS) [98].

Originally, MapReduce was designed to run over commodity servers; machines that
are error-prone, have limited computation and storage capacities, and connected with
low network bandwidth. Therefore, to achieve parallel and scalable data processing,
MapReduce has two design features: First, mitigating failures by relaunching only the
tasks of the failed machines. Second, adopting moving computation to data principle to
reduce data traffic over the network which results in more efficient execution. In essence,
if a machine holding the input data of a task is not available (i.e., computation resources
are occupied running other tasks), the task can be run on another machine which has a
replica of the same data. MapReduce framework benefits from data replication employed
by underlying DFSs to increase the data locality of running (map) tasks.

Hadoop MapReduce

Apache Hadoop [19] is the de-facto system for large-scale data processing in enterprises
and cloud environment. Hadoop MapReduce framework is an open-source implementa-
tion of the Google MapReduce [66] in Java programming language. Nowadays, Hadoop
is widely used for Big Data processing by both academia and enterprises [222]. Moreover,
MapReduce algorithms have been used to solve several non-trivial problems in diverse
areas including data processing, data mining, and graph analysis [187].

Hadoop MapReduce jobs run on top of Hadoop Distributed File System (HDFS) [263]
(which is inspired by Google File System [98]) to read their input data and write their
outputs. However, other storage systems can also be used (e.g., OpenStack Swift and
Amazon S3).

In the early releases of Hadoop, resource management and job scheduling were handled
by the framework. A master node runs the job tracker to globally manage the execution
of jobs while each worker machine runs a task tracker which is responsible for managing
the task executions on the worker node that hosts it.

Starting from version 2 of Hadoop. The resource management is refactored out from
the original code into a separate project, Yet Another Resource Negotiator (YARN) [281].
In YARN, the resource management and job scheduling are separated; The ResourceM-
anager daemon has a global view on the resources of the cluster and orchestrates them
between the applications, while the ApplicationMaster is a per-application process that
is responsible for the scheduling and the monitoring of a single job. Each worker machine
runs a NodeManager process who is responsible for managing the local resources of the
machine.

In a typical Hadoop deployment, one or more dedicated nodes run the master processes
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of HDFS and YARN (i.e., the NameNode and the ResourceManager) while other nodes
in the cluster act as workers and run the slave processes (i.e., the DataNode and the
NodeManager). In the rest of this thesis, we refer to Hadoop MapReduce as Hadoop for
simplicity.

Spark

Apache Spark [20] is an open-source computing framework that unifies streaming, batch,
and interactive Big Data workloads to unlock new applications. It fills the gaps where
Hadoop cannot work efficiently, in particular, iterative applications and interactive ana-
lytics [310]. To realize efficient processing, Spark relies on an in-memory data structure
(Resilient Distributed Dataset (RDD)) that stores the partial and intermediate results
in memory, which avoid unnecessarily disk access in case of iterative and interactive ap-
plications. Moreover, Spark extends the API of MapReduce to richer transformations
such as FlatMap, Filter, Join, etc. which enables writing more powerful applications.
Many large companies rely on Spark for their data processing pipeline as Yahoo, Baidu,
PanTera, and TripAdvisor [224].

Flink

Apache Flink [18] is an open-source framework and distributed processing engine for
stateful computations over unbounded and bounded data streams. Flink leverages a
processing paradigm that unifies all types of processing (including real-time analytics
and batch processing) as one unique data-stream model. Flink is based on a distributed
streaming dataflow engine which is written in Java and Scala. Flink is designed to process
real-time streaming data, and to provide high throughput with low latency streaming
engine. Besides stream processing, Flink also provides support for batch processing,
interactive processing, graph processing, and machine learning applications. Flink is
widely employed in industry and large enterprises such as Netflix, Alibaba, Ebay, and
Uber [223].

4.5 Conclusion

To perform Big Data processing in clouds, large-scale storage systems and analytical
frameworks are indispensable to deal with the ever-growing datasets. Besides scalability,
distributed storage systems have to ensure the availability of data during the processing.
At the same time, analytics frameworks should efficiently leverage the underlying storage
systems for higher performance. In Part III, we investigate erasure codes as a cost-effective
redundancy technique in storage systems for efficient data analytics. We characterize the
performance of data-intensive applications under EC and we propose a data placement
algorithm to improve their performances.
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Clouds have become the dominant platforms for running a wide range of services
and applications including enterprise applications [198] and scientific applications [289].
The main reason behind such wide adoption is the promise of providing fast and agile
service deployment in a cost-effective manner [97] and therefore responding quickly to the
changing demands of users. Thus, it is important to ensure fast service provisioning (i.e.,
the process that occurs between requesting the service and when the service is running
and ready to handle users’ requests).

In general, to start a service in the cloud, a disk image (virtual machine image or
container image) is required to be available locally on the target machine. Such image in-
cludes an operating system (in case of VMI) and a “service-specific” customized software
stack. Therefore, they could be large in size (i.e., up to tens of gigabytes [35, 258]). Usu-
ally, services’ images are created once, stored centrally, and then transferred to the target
machine(s) when the service is provisioned. Given their sizes, it has been pointed that
transferring these images (when not available locally) from the central storage repository
to the compute hosts is the dominant part of the provisioning process [219, 109]. This
highlights the importance of image retrieval in the service provisioning process.

The number of cloud services and applications is continuing to increase and therefore
the number of VMIs to run them. Accordingly, cloud providers are experiencing a new
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phenomenon called Image Sprawl [241], which is due to the large number of possible
combinations of different operating systems and software stacks, and the need to keep
older versions of the images for archiving or for reproducibility reasons. This results in
gigantic image datasets and stresses the importance of efficient image management at
scale to provide fast service provisioning. Furthermore, scalable image management is
especially important in the new emerging infrastructures such as geo-distributed clouds
and Edge environments which are featured with heterogeneous WAN links [119] – thus
amplify the impact of image transfer – and “limited” storage capacities.

In this chapter we present an overview of image management for virtual machines
and containers in Sections 5.1 and 5.2, respectively. Afterward, in Section 5.3, we discuss
the related work on image management optimizations to improve service provisioning in
clouds. Finally, Section 5.4 concludes this chapter by highlighting some challenges.

5.1 Virtual Machine Image Management

Virtual Machine Images (VMIs) are considered the basic building block for services in
clouds. A service image encapsulates the software of the service in addition to its depen-
dencies including the operating system itself.

In this section, we first present the different formats used to represent VMIs. Then,
we briefly introduce the notion of the image repository. Finally, we describe the workflow
of VM provisioning in clouds.

VM Image formats

VMIs are currently distributed as disk-image files, which are files that mirror the content
of physical disks. The most basic and compatible format is the raw image (.img) that
contains sector-by-sector contents of a disk. Other formats are available to provide more
sophisticated features such as the support for sparse disk, copy-on-write, compression,
encryption, snapshotting, etc. For example, the qcow2 [189] disk image format uses a
disk storage optimization strategy that delays allocation of storage until it is needed
which results in smaller disk image size. Furthermore, several vendor-specific disk-image
formats are also available, including vdmk from VMware [284], vdh from Microsoft [192],
and vdi from VirtualBox [282].

Image repository

Image management in the cloud is usually dedicated to an image service. This service
provides a library for the images or an image repository. In addition to storing and
serving the images, the image service provides more functionalities including browsing,
access control, and deployment. Moreover, features such as image content introspection
and manipulation capabilities can also be provided. For actual data (i.e., images) storage,
image services usually rely on backend storage systems. For instance, in OpenStack, the
image service (Glance) relies on a distributed object-store (Swift) to persist the VMIs.
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VM provisioning workflow

The service provisioning process can be divided into two major parts including (i) the
scheduling process: choosing which server to run the VM, and (ii) the launching process:
the process of starting up the VM on the chosen server. This includes transferring the
image (from the storage nodes to the compute node, if it is not available locally) and
booting up the VM by the hypervisor.

Many works are dedicated to optimizing the scheduling process (i.e., the mapping
between VMs and physical machines) to optimize resource utilization, monetary cost, or
energy efficiency [260, 176, 46, 251, 228, 154, 221]. However, in this work, we focus on
the second part (i.e., the launching process). To start a service on a server, the image
should be read from the image repository, transferred over the network to the host server,
and then written to its local disk before being booted by the hypervisor. As VMIs are
in the order of gigabytes, launching a VM can take a long time. Even worse, the impact
of disk and network becomes more obvious in the case of multi-deployment (i.e., when a
large number of VMs are requested at the same time) and therefore increases further the
provisioning time [202, 240, 314].

5.2 Container Image Management

Containers are attracting more attention in clouds as they provide more lightweight pro-
cess isolation compared to conventional virtual machines [266]. Like VMIs, container
images are growing in numbers [264]. Moreover, they present high similarity as users
build their container images on top of other images.

The container image should be available locally to start the corresponding container.
Though smaller in size compared to VMIs, pulling a container image from the image
repository (i.e., storage nodes) to the compute node accounts for 76% to 92% of the
total provisioning time of a container [109, 75]. Therefore, reducing the transfer time
of container images – from the repository to the host machine – plays a vital role in
improving containers provisioning time.

Without loss of generality, in this work, we focus on Docker containers. Docker is a
mature container technology and has a well-defined image format. Besides, it is widely
adopted in both industry [102] and academia [162].

Docker

Docker is a container management framework which provides a set of tools to simplify
container creation, execution, and sharing. Docker is composed of three components:

• The Docker daemon is responsible for managing containers on the host machine.
It runs and stops the containers, create images and communicate with the registry
(i.e., the image repository) to pull and push images. It accepts commands from the
Docker client.

• The Docker client issues commands to the daemon using RESTful API.

• The Docker registry is the image repository for Docker. The registry stores, tags,
and serves docker images.
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Docker Images and Layers

Docker container images are structured as layers. Each image consists of an ordered set
of layers and a manifest that describes the layers of that image. Each layer is a collection
of read-only files that are stored as a gzip-compressed tar file. Layers could range in size
from few kilobytes to several hundreds of megabytes [17]. The layered image structure
supports layer-sharing across different containers. Docker identifies layers by hashing over
their contents.

Docker registry

The registry is the component responsible for container image management in the Docker
ecosystem. It stores all the layers (from all the container images). Since layers are read-
only and could be shared by multiple container images, Docker registry uses layer-level
deduplication to reduce the size of the image dataset. Docker registry could be a remote
online registry (e.g., Docker Hub [73]), a central private registry, or a local registry on the
same machine as the Docker daemon. Docker Hub [73], one of the largest public Docker
repositories, contains more than 2.5 million images [74].

Provisioning workflow

Once a container is scheduled to run on a compute node, the corresponding image is
requested to be transferred to this node, if not available locally. Docker daemon first
fetches the missing layers from a registry. The received layers are then extracted locally.
To boot up the container, the read-only layers of the image are stacked on top of each other
and joined to expose a single mount-point via a union file system such as AUFS [22] or
OverlayFS [212]. An extra writable layer is added on top of them to store all the changes
to the container file system using the copy-on-write (COW) mechanism. This layer will
be lost when exiting the container unless it is explicitly saved.

5.3 Towards Efficient Service Image Management in
Distributed Clouds

There has been much work on optimizing service provisioning in cloud. Hereafter, we
review those related to efficient virtual machine provisioning and container provisioning.
After that, we highlight some state-of-the-art data transfer over the WAN.

5.3.1 Efficient virtual machine management

Previous literature has shown high similarities across VMIs, up to 80% [142, 138, 219,
35, 241, 254]. These similarities are attributed to the common base images and image
build tools that are used to construct the services’ images. As a result, deduplication
techniques are widely adopted not only to reduce the image storage footprint but also to
improve the service provisioning time by leveraging common chunks from other images
that are already available on the host machine.

In this section, we review some literature about VMI management. First, we present
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works that explore deduplication to reduce the size of the image repository. Then, we
discuss research works on improving the transfer time of VMIs. Finally, we describe the
related work on optimizing the boot time of the VMs.

Optimizing storage overhead

Content Addressable Storage (CAS) systems have been investigated as a storage backend
for VMIs [196, 175]. CAS applies deduplication to store the data. As a result, a large
saving in storage cost can be achieved (up to 70%). However, these systems cannot ensure
fast access to the VMIs – which is important in cloud – as they are originally designed
for archival data where fast data insertion and retrieval are not critical.

The Mirage library implements the Mirage Image Format (MIF) that exposes the
semantic of the images [241]. Mirage employs file-level deduplication to the VMI library
achieving more than 10x reduction in storage cost. Moreover, exposing the file system
structure of images allows several maintenance operations at a lower cost. For example,
applying a security patch can be performed by modifying the corresponding files without
the need to boot a VM and take another snapshot of its disk. Importantly, these modi-
fications are applied to all the concerned images at once. Similar work applies the same
technique of file-level deduplication [254]. In addition to the features provided by Mirage,
they support Copy-on-Write (COW) file systems and allow direct mount of stored images.

LiveDFS [199] is a file system that enables deduplicated storage for VMIs. LiveDFS
has several distinct features including spatial locality, prefetching of metadata, and jour-
naling. LiveDFS is POSIX-compliant and is implemented as a Linux kernel-space file
system. LiveDFS can save at least 40% of the storage cost while achieving reasonable
performance in importing and retrieving VM images.

Optimizing VMI transfer time

One of the first attempts to improve the VMI transfer time is the use of a modified version
of BitTorrent to distribute VMIs at CERN [289]. Following this approach, images should
be completely copied to the destination hosts before running the VMs. However, this
approach is effective only if a large number of instances are started from the same image
as common contents across different VMIs cannot be leveraged.

Kochut et al. [157] decompose VMIs into clusters of data. Each image is composed
of one or more clusters with some clusters shared between more than one image. When
provisioning a VM to a compute node, only the missing clusters are transferred, reducing
the network traffic and the provisioning time.

Karve et al. [149] extend the previous work and propose to leverage data deduplication
for VMIs transfer in geo-distributed data centers. The master site maintains the global
view of the system and the distribution of the chunks; thus, it is responsible for creating
the transfer plan of chunks to the destination site. However, this work is limited to small-
scale systems and may suffer a noticeable performance degradation due to the centralized
management overhead when dealing with a large number of VMIs. Besides, it does not
consider network heterogeneity between data centers [119].

In Virtual Distribution Network (VDN) [219], the authors opt for more fine-grained
control by employing fixed-chunk deduplication. Therefore, when provisioning a VM,
just the missing chunks are transferred to the destination host. Moreover, VDN takes
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the data center network topology into account and always tries to retrieve the missing
chunks from the nearest node.

Xu et al. [300] propose zone-based storage to improve chunks distribution (i.e., image
transfer). In-memory caches are deployed for each group of nodes (i.e., a zone) to cache
the hot chunks instead of retrieving them from the central repository. The zone-based
caching approach avoids the bottleneck caused by global caching and reduces the storage
overhead caused by pure local caches.

Further works propose that VM schedulers leverage the chunks distribution to select
the host that has the highest percentage of chunks for the corresponding VMI. While this
can greatly reduce the amount of transferred data, and therefore, reducing the transfer
time of the image, it may adversely impact the performance of the running services and
applications. These approaches have been discussed in [219, 35, 300].

Optimizing VM boot time

Fast Virtual Disk (FVD) is a new virtual machine image format [269]. FVD introduces,
among others, copy-on-read and data prefetching. Hence, when booting a VM with
the image stored remotely, the requested chunks can be cached locally instead of being
requested again over the network. This new image format provides a solution in both
cloud and non-cloud environments, however, it cannot leverage the similarities in-between
the images of the VMs running on the same host.

Lean Virtual Disk [34] is another virtual machine disk format that eliminates the
redundancy between multiple VMIs on the same host by employing deduplication. This
can reduce disk space and disk I/O leading to faster boot time as similar chunks could
be leveraged locally from other images. However, this approach breaks the modularity of
images and introduces high management overhead.

VMTorrent [240] employs peer-to-peer chunks distribution to transfer the image of
a VM. However, it decouples the chunks distribution from data stream presentation
mechanism, allowing hypervisors to access this data stream as if it was stored locally thus
the image could be booted while the chunks are arriving. VMThunder [314] employs a
similar method but it provides more features such as Cache-on-Read (CoR) to further
reduce the network traffic.

Razavi et al. [236, 235] followed another approach by just caching the chunks required
for the boot process. The size of this boot working set is in the order of hundreds of
megabytes. The caches can be deployed in the compute node to reduce the network
traffic or in the storage nodes to reduce disk access. YOLO [200] improves over the
previous works by introducing a non-intrusive solution for prefetching and caching the
boot data and can work for virtual machines as well as containers.

ACStor [297] takes the current network traffic into account when retrieving the re-
quested chunks while booting the VM. In particular, the requested chunks are retrieved
from nodes with light traffic-load. This is especially important in a large-scale environ-
ment where the overall network traffic is unbalanced.

5.3.2 Scalable container image management

Docker provides built-in deduplication for its images as common layers are stored once.
Even though layer deduplication reduces the storage overhead, however, pulling the im-
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ages to the compute host consumes a considerable time of the provisioning process. There-
fore, many efforts have focused on optimizing the Docker registry performance as well as
container image placement and retrieval to improve the provisioning time.

The Docker registry can be seen as a data-intensive application; it is estimated [17]
that at least hundreds of terabytes of data, and at least 2.5 million images [74], are stored
in Docker Hub [73]. With the increasing number of concurrent clients, the registry could
become a bottleneck in the provisioning process.

Docker image placement and container provisioning have been studied in [197]. The
authors propose a collaborative Docker registry where the private registries on the cluster
(compute) nodes can collaborate to store and retrieve Docker images instead of relying
on a central or remote registry. Moreover, the authors opt for layer placement rather
than complete image placement to avoid redundancy in common layers. They employ
simple heuristics to distribute the layers to the local registries. Bipartite graphs have
been used to balance the retrieval of missing layers from multiple nodes. They ensure
image availability by 3-way replicating each layer.

Anwar et al. [17] analyzed IBM cloud registry traces in eight data centers and char-
acterized Docker registries workloads. Based on their findings (e.g., the registry access
patterns are heavily skewed, 65% of the layers are smaller than 1 MB, strong correlation
between adding a new image and subsequent retrievals of that image, etc.), they designed
caching and prefetching techniques to speed up image pulls.

BitTorrent protocol has been used to distribute containers’ layers in a single data
center setup [148]. Several instances of the peer-to-peer registry are deployed in the
system, moreover, the cluster’s nodes contribute to the distribution of images. A great
reduction in provisioning time could be achieved when the same image is requested by
a large number of machines simultaneously. However, for single image provisioning,
no improvement can be achieved. Moreover, BitTorrent protocol cannot guarantee a
predictable performance.

Docker-PI [5] overcomes the limitations of Docker engine when pulling images (from
a Docker registry) to improve the image retrieval time. In essence, when retrieving
the layers of an image, Docker performs the retrieval phases sequentially (i.e., pulling,
decompression, verification, and extraction). Docker-PI allows the overlapping of these
phases while ensuring the consistency of the final image when creating it. This can
efficiently utilize the resources of the destination machine which result in faster retrieval
time.

Some works opt for centralized management where all containers are served remotely
from a single distributed storage system. Slacker [109] uses chunk-level deduplication to
speed up container provisioning time by transferring the required chunks on demands,
similar to previous work on VMIs. This is motivated by the fact that just a small fraction
of the image is needed to boot the container (around 6%). However, Slacker requires
flattening a Docker image into a single layer, breaking the modularity presented in the
original design of Docker images.

In Cider [75], rather than storing images in the Docker registry, all the layers are kept
in a shared storage system (Ceph), while the registry serves as a metadata server. As
Slacker [109], Cider eliminates the initial image transfer (thus, achieves a 85% faster boot
time), however, it still incurs a network overhead while containers are accessing their data
over the network.
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Similar to Cider, Wharf [317] allows Docker daemons to share a distributed storage
instead of relying on the local storage of the host nodes. This approach requires modifi-
cations to the Docker daemons as originally Docker daemons are designed to run alone
(i.e., one daemon per host) and share nothing with other daemons. Even though it speeds
up image retrievals by up to 12x, Wharf imposes noticeable performance overhead on the
running services and applications as all the requests to the image are now made over the
network.

5.3.3 Optimizing large-scale data transfers: Beyond service im-
ages

Various solutions and tools have been proposed to optimize large data transfer over the
Internet (i.e., WAN). We present here some representative work while arguing why they
are not adequate to optimize service image transfer.

General purpose content delivery systems such as BitTorrent [56] are used to distribute
large files, especially multimedia files, over the Internet. However, BitTorrent does not
take into account network heterogeneity when retrieving data as peers are selected ran-
domly. Moreover, BitTorrent does not guarantee predictable performance. IPFS [38]
(described in Section 4.3) is a peer-to-peer distributed file system that has built-in dedu-
plication across all its content. However, IPFS addresses network heterogeneity by pulling
chunks from multiple peers to avoid the impact of weak links. This may lead to better
performance but at the cost of high network overhead.

Sharing large datasets (e.g., scientific datasets) between multiple Grid sites [89] has
increased the demand for efficient data transfer over Internet. GridFTP [9, 10] is an
extension of File Transfer Protocol (FTP) [87] that is optimized for secure, reliable, and
high-performance data movement. To achieve high end-to-end data transfer, GridFTP
employs techniques such as multiple TCP streams per transfer, striped transfers from a
set of hosts to another set of hosts, partial file transfers, and automatic negotiation of
TCP buffer/window sizes. As extensions to GridFTP for higher data transfer, the authors
in [181] develop tuning mechanisms to select at runtime the number of concurrent threads
to be used for transfers, while multi-hop path splitting and multi-pathing have been
discussed in [152]. GridFTP, alongside other file transfer protocols and applications such
as FTP [87] and FDT [84] as well as file-based transfer commands, such as scp [178] and
rsync [248] only provide point-to-point transfer, thus, do not benefit from data replicas
in other sites.

Minimizing the transfer time of a set of files distributed across multiple machines to
another set of machines in a wide-area environment is studied in [153]. Files are split into
chunks so that the chunks of a file could be retrieved from different replicas. However,
the chunk size is large (the smallest considered chunks is one third of the file size), and
decreasing the size of the chunk increases substantially the complexity of the proposed
algorithm. Moreover, this approach does not consider the similarities between files leading
to high network traffic when transferring large similar files.

With the proliferation of geo-distribute clouds, the demand for inter-data center data
transfers in large volumes (e.g., migration of Big Data) has significantly grown. Tudoran
et al. [276] propose an adaptive data management system that automatically builds and
adapts performance models for the cloud infrastructure to offer predictable data handling
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performance for the transfer cost and time. Wu et al. [298] leverage Software Defined
Networking (SDN) techniques to design efficient bulk data transfer service at different
urgency levels (different finishing deadlines), in order to fully utilize the available inter-
data center bandwidth. Lin et al. [177] optimize files transfer under delay constraints by
leveraging multi-path transfer. However, these approaches either increase the monetary
cost of the transfer to increase its throughput or perform on the low network level and
this requires a knowledge of the underlying network structure which is only available for
the cloud provider, and therefore, these solutions complement ours.

Finally, cloud providers do not offer dedicated services for data transfer, however,
object storage solutions (e.g., Amazon S3 [28], Azure Blob Storage [29], OpenStack
Swift [210]) can be used to perform the transfer by reading from one site and writing
to another one. However, these systems usually provide data transfer by the means of
the underlying point-to-point protocol (e.g., rsync in case of OpenStack Swift [205]).

5.4 Discussion: Enabling Efficient Service Provisioning
in Distributed Clouds

Service image management is essential to provide fast service provisioning in clouds.
Provisioning a service requires considerable network and disk access overhead to ensure
the availability of the large service image on the destination compute node. Hence, a large
body of work has focused on service image management to optimize service provisioning.
However, several new challenges arise when provisioning services in distributed clouds:

• Low WAN links bandwidth: the low bandwidth of network links (e.g., as low as
35 Mb/s [119]) prolongs the provisioning of services as the corresponding image
takes a longer time to be transferred. Transferring as little data as possible might
reduce the impact of low bandwidth links.

• Heterogeneous WAN links bandwidth: the heterogeneity between links bandwidth
could be 12x [119]. This impacts the provisioning time if the available bandwidth is
not fully utilized. Adapting the amount of transferred data to the link bandwidth
might reduce the impact of this heterogeneity.

• Monetary cost of data transfer: unlike local area network (LAN), transferring data
over the WAN in clouds has a monetary cost [12]. Sending less data reduces the
monetary cost of image transfer.

• Limited available storage of Edge-servers: as Edge-servers have limited storage
capacity, storing all the images locally is not possible. This requires pulling images
over the network. However, exploiting a small fraction of their capacities to store
some data might improve the provisioning time.

Unfortunately, most state-of-the-art work for service provisioning attack the problem
in a single data center setup. The proposed methods are not adequate for distributed
clouds as they do not consider the previously mentioned challenges. On the other hand,
works targeting data transfer over WAN are usually general-purpose methods, in most
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parts they are point-to-point transfer, or allow parallel transfer but do not take the specific
features of service images into account (i.e., high similarity) which result in redundant
data movement and extra monetary cost.

In response, in the following two chapters, we show how to improve service provision-
ing in distributed clouds by means of efficient network-aware retrieval and placement of
services’ images (i.e., VMIs and container images).
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CHAPTER 6. NETWORK-AWARE SERVICE IMAGE RETRIEVAL IN
GEO-DISTRIBUTED CLOUDS

Nowadays, major cloud providers deploy their services on geo-distributed infrastruc-
tures. This worldwide distribution provides low latency for the end users of the ser-
vices. For example, Amazon AWS currently has 18 geographically distributed service
regions [26], and Windows Azure operates in 54 geographical locations [296]. This geo-
distribution may result in severe performance degradation for service provisioning (i.e.,
long and unpredictable provisioning times). This is because VMIs may need to be trans-
ferred over WAN links which are featured with low bandwidths and usually exhibit high
variability. While the provisioning time is dictated by the distribution of VMIs and net-
work bandwidth in-between sites, unfortunately, existing provisioning methods do not
consider these aspects and therefore are not adequate for geo-distributed clouds.

To mitigate the impact of WAN links, in this chapter, we present the design and
implementation of Nitro, a novel VMI management system for geo-distributed clouds.
Nitro focuses on minimizing the transfer time of VMIs over a heterogeneous WAN which
is the main performance bottleneck when provisioning services in geo-distributed clouds.
To achieve this goal, Nitro incorporates two complementary features. First, it makes
use of deduplication to reduce the amount of data which is transferred due to the high
similarities within an image and in-between images. Second, Nitro is equipped with a
network-aware data transfer strategy to effectively exploit links with high bandwidth
when acquiring data and thus expedites the provisioning time. The network-aware strat-
egy embraces an algorithm that produces an optimal chunk scheduling in polynomial
time based on graph flow algorithm. To reduce the overhead and improve the scalability
of our designed algorithm, we propose a grouping optimization to reduce the number of
chunks in the graph. Experimental evaluation of Nitro – on top of Grid’5000 [105] –
demonstrates its utility while outperforming state-of-the-art VMI storage systems.

This chapter is organized as follows. In Section 6.1, we define the challenges of geo-
distributed service image management. In Section 6.2, we present the design principles of
Nitro. Then, in Section 6.3, we explain the network-aware chunk scheduling algorithm.
While in Section 6.4, we present Nitro and its workflow. Experiment methodology and re-
sults are discussed in Sections 6.5 and 6.6, respectively. The applicability and limitations
of Nitro are discussed in Section 6.7. Finally, Section 6.8 concludes this chapter.

6.1 Challenges of VM Provisioning in Geo-distributed
Clouds

As fast service provisioning is essential in clouds, VMI management has become an im-
portant issue. Prior literature has mainly focused on leveraging deduplication techniques
to eliminate redundant blocks in-between VMIs and therefore reduce the storage space
as well as the provisioning time within a single data center [157, 219, 300]. However, few
works have explored VMI management in geo-distributed clouds [149]. The geographical
spread of data centers, the continuous increase of VMIs number, in addition to the limited
bandwidth and heterogeneity of the WAN connections, have elevated VMI management
to a key issue in geo-distributed clouds. Nevertheless, several major challenges arise when
dealing with geo-distributed VMIs:

• Challenge 1: The size of VMIs is critical for fast service provisioning, as the size
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of a single VMI can reach dozens of gigabytes [35, 258, 286]. Previous efforts try
to reduce VMI size by exploiting similarities within and in-between VMIs, through
deduplication, to reduce the storage cost. However, they do not evaluate the impact
of deduplication on the service provisioning time, when the VMI is pulled from
different geo-distributed sites over high latency and low bandwidth WAN.

• Challenge 2: On the one hand, it is not practical to replicate VMIs on all sites.
The cost, in terms of data transfer across data centers, may become prohibitive as
the size and number of VMIs increases. For example, maintaining one single VMI
introduces high transfer cost when it is updated frequently; security patches alone
may result in almost 150 updates per week [320]. On the other hand, replicating
VMIs on (few) geo-distributed sites to ensure high availability and meet users’ needs
poses a challenging issue when provisioning VMs, especially as the large size VMIs
must be pulled – over WAN – from multiple geo-distributed locations.

• Challenge 3: Previous solutions which adopted deduplication techniques assume
a constant cost when retrieving the VMI chunks and thus use simple and random
retrieval methods. This results in long provisioning time when applied directly in
geo-distributed clouds, due to the link heterogeneity. For example, the bandwidth
in-between 11 sites in Amazon EC2 varies by up to 12x [119]. An optimal retrieving
plan is therefore imperative to improve the provisioning time. However, finding the
optimal solution comes with a high computation overhead due to the large number
of chunks. For example, as shown in Section 6.6, it takes almost 267s to find the
optimal plan to pull 10,000 chunks from 4 sites.

Our work addresses the aforementioned challenges of VM provisioning in geo-distributed
clouds and takes a step forward toward scalable and efficient VMI management through
the introduction of Nitro. Nitro, by exploiting deduplication and being aware of the
network characteristics, aims to improve the provisioning time in geo-distributed clouds.

6.2 Nitro: Design Principles

Nitro is a novel VMI management system responsible for storing and retrieving VMIs
to and from different sites in geo-distributed clouds. This section presents the design
principles of Nitro, while the following two sections focus on the network-aware VMI
pulling and the implementation details of Nitro. Nitro is designed with the following
goals in mind:

• Reduce network overhead: This is critical in geo-distributed clouds when trans-
ferring the large-size VMIs. Previous works [142, 138] show that exploiting simi-
larities within and in-between VMIs may result in a reduction in storage space by
up to 80%. Therefore, Nitro aims at reducing the amount of data transferred over
WAN by leveraging deduplication. This does not only reduce the size of acquired
VMIs but also effectively increases locally available chunks (on destination site).

• Network-aware data retrieval: The bandwidth and latency in-between data
centers vary significantly [119]. For that reason, Nitro employs a network-aware
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chunk scheduling algorithm to find the optimal plan when acquiring chunks from
different sites. Thus, we can effectively leverage links with high bandwidth and
reduce the number of chunks retrieved over weak links.

• Minimize provisioning time: Through reducing the amount of transferred data,
exploiting chunks locality, and carefully pulling chunks from different sites, Nitro
can minimize the transfer time and thus improve the provisioning time.

• Ensure minimal runtime overhead: Finding the optimal plan to pull a VMI
comes with a high computation overhead due to the large number of replicated
chunks. Therefore, we propose a grouping optimization to reduce the problem
size (i.e., reduce the number of chunks) when finding the optimal solution. This
optimization allows our scheduling algorithm to run in sub-second while preserving
its optimality.

• Storage backend independent: Since Nitro is implemented as a separate layer
on the top of the cloud storage system, it does not impose any modifications to
the cloud system code. Consequently, Nitro can use any storage systems (i.e.,
key/value store) to store the chunks. This modularity is important as new emerging
key/value storage systems can be used to further improve the provisioning time
through optimizing data transfer within a data center.

6.3 Network-aware Chunk Scheduling Algorithm

This section presents the network-aware chunk scheduling algorithm used in Nitro. This
algorithm produces an optimal chunk scheduling that minimizes the transfer time of
chunks over heterogeneous networks. It is based on min-cost max-flow graph algorithm
and it has polynomial time complexity.

6.3.1 Problem definition

Consider the scenario of I VMIs and a geo-distributed cloud composed of N sites. Each
image is divided into C equal chunks and the chunks can be spread to any of the N sites.
We suppose that each pair of sites is connected with a dedicated link [283]. When a
VMI is requested from a site, we first look for the chunks of the VMI in the local site.
If there are not enough chunks to reconstruct the VMI locally, we need to decide which
sites to pull the missing chunks from (i.e., the chunk scheduling problem). Our goal is to
minimize the time needed to pull all missing chunks from remote sites.

We formally model the chunk scheduling problem using a bipartite graph G “ pV,Eq.
The vertex set V includes two types of vertices, namely the set of requested image chunks
and the set of all sites. E is the set of directional edges from the chunk nodes to site
nodes. An edge from a chunk c to a site s represents that there is a copy of chunk c on
site s.

Under the bipartite graph model, the chunk scheduling problem can be described as
finding an assignment from chunk nodes to site nodes that reduces the transfer time.
The number of chunks assigned to a site represents the relative time needed to complete
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the transfer from that site (assuming equal chunk size and homogeneous bandwidth).
Therefore, as the transfers can be performed in parallel from different sites, minimizing
the total transfer time can be achieved by minimizing the maximum transfer time from
each site. Assignment problems in bipartite graphs are often solved using network min-
cost max-flow algorithm. Flow algorithms have been used in the literature to optimize
job placement in data centers [134, 99] and data transfer between data centers [153, 298].
However, classical matching algorithms try to find the maximum match regardless of the
mapping. In the following, we introduce the basics of the algorithm and how we have
adapted it to solve our problem.

6.3.2 Maximum-flow algorithm

The maximum flow algorithm tries to find the maximum flow that can go through the
network from the source node to the sink node, respecting the following two conditions:

• (1): For each edge, the flow going through the edge should not exceed its capacity.

F peq ď Cpeq, @e P E

where F and C are the flow and capacity of edge e, respectively.

• (2): For each vertex, the incoming flow should be equal to the outgoing flow.
ÿ

u

F peuvq “
ÿ

k

F pevkq, @v P V

where u is an incoming neighbor of v and k is an outgoing neighbor of v.

In our problem, the capacity of edges between the source node and the chunk nodes
is 1. The capacity of the edge connecting a site node with the sink node represents the
maximum chunks that can be pulled from the site. Initially, it can be equal to the total
number of chunks. However, these capacities will change during the execution of the
scheduling algorithm. Figure 6.1 shows the graph representation of a simple example
where 5 chunks spread over 3 sites are required.

Directly applying the maximum flow algorithm to our problem using the above graph
representation might not generate the edge assignment that we are looking for. This is
because the algorithm always tries to maximize the flow regardless to which sites these
chunks are assigned to. However, in our problem, it is important to study how the
maximum flow is distributed among edges. We design our chunk scheduling algorithm
based on this observation.

6.3.3 Chunk scheduling algorithm

As our goal is to find the chunk assignment solution which minimizes the time needed
to acquire all requested chunks, we design a max-flow based algorithm to find the maxi-
mum flow solution that also provides a balanced load distribution between sites as much
as possible. For simplicity, we first assume the network bandwidths between all sites
are homogeneous and discuss how to extend our algorithm to heterogeneous network
environment later.
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Figure 6.1: Graph example: 5 chunks which are spread over 3 sites are required. Initial
edges capacities are also shown.

As described in the previous subsection, the capacity of an edge represents the max-
imum amount of flow that can go through it. In our case, the amount of flow going
through edges connecting site nodes with the sink node represents the number of chunks
assigned to each site, therefore, the data size. As the bandwidth is homogeneous between
sites, the edge flow represents the transfer time. Hence, minimizing the flow is equivalent
to minimizing the transfer time from all sites. Consequently, the idea behind chunk load
balancing is how to control the capacity of edges connecting the sites with the sink node.
Intuitively, a capacity equal to or greater than the number of chunks can always guaran-
tee a max flow solution, whereas a capacity less than |C|

|S|
cannot lead to a feasible solution

because some chunks remain unassigned. Thus, our goal is simply to find the minimum
capacity that can provide a max flow solution in the range r |C|

|S|
, |C|s. By searching for

the minimum threshold – which represents the maximum number of chunks that can be
pulled from each site – that can produce a feasible flow solution, we find the solution
with the most even (i.e., load-balanced) chunk distribution.

So far, we have provided a solution for the case of homogeneous WAN bandwidth
between sites. However, in reality, the WAN bandwidth between different sites is het-
erogeneous and assigning an equal number of chunks to each site, if possible, does not
minimize the total time of chunk acquisition, as more time is spent to pull the same
amount of data from different sites. To address the heterogeneity issue, we scale the ca-
pacities of the edges connecting site nodes with the sink node according to the available
bandwidth (between each site and the destination site) before running the flow algorithm
and for every iteration of the algorithm. The intuition behind capacity scaling is that
the site with higher network bandwidth can pull more chunks within a unit of time than
sites with lower bandwidth.

For example, consider that 4 chunks are required and all of them are available on two
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Figure 6.2: An example of the grouping optimization.

sites. One of the sites has a network bandwidth of 50 Mb/s to the destination site and the
other site has a bandwidth of 150 Mb/s. Without considering network heterogeneity, the
scheduling algorithm retrieves two chunks from each site. However, the optimal solution
would be to retrieve one chunk from the first site and three chunks from the second one.

6.3.4 Grouping optimization

As a VMI is usually composed of dozens of thousands of chunks on average, the bipartite
graph can become large. To reduce the overhead and improve the scalability of our
designed algorithm, we propose a grouping optimization to reduce the number of chunk
nodes in the graph.

The number of chunk nodes can be reduced by grouping the chunks that can be
found in the same set of sites into one chunk node, denoted as Mega Chunk (MC) node.
The number of mega chunk nodes has an upper bound equal to 2|sites| ´ 1, which is the
cardinality of the set of sites subsets. This upper bound is reached only if there is at least
one chunk that is connected to each subset of sites. Also, the number of mega chunk
nodes does not exceed the number of chunk nodes, which means that this optimization is
at least as fast as before applying it. Note that, creating the MC nodes can be performed
in linear time complexity.

After the grouping, the capacity of edges from the source node to the mega chunk
nodes has to be modified according to the sizes of these mega chunk nodes. For example,
as shown in Figure 6.2, the capacity of the edge from the source node to the first mega
chunk node is changed to two, as there are two chunks in the mega chunk. A mega chunk
can be matched to multiple sites at the same time, which is different from the simple
chunk case where each chunk is matched to one and only one site. For example, given a
mega chunk node of five chunks, if this mega chunk is matched to two sites, with a flow
of two to the first site and three to the second one, we randomly select two chunks to
pull from the first site and three from the second site, as we do not differentiate between
the chunks.
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6.3.5 Algorithm overview and analysis

A summarized pseudo-code of our chunk scheduling algorithm is presented in Algorithm 1.
It receives as parameters the requested chunks, the sites to pull from, the current mapping
of chunks and the bandwidth scaling (i.e., the relative bandwidths between the destination
site and other sites). The algorithm returns an assignment of the requested chunks to
the sites. The functions used inside the algorithm are described below:

• create_mega_chunks implements the grouping optimization and groups the in-
put chunks which can be found in the same subset of sites into mega chunks.

• build_bipartite_graph builds the graph from the chunks and sites and sets the
capacity of the edges as discussed before.

• add_capacity_to_sink_edges sets the capacity of the edges linking the site
nodes to the sink node.

• max_flow is the preflow-push algorithm [6] for computing the maximum flow. It
takes a graph instance as input and updates the flow of its edges.

• remove_set_k is a helper function that removes k elements randomly from the
input set and returns them.

The algorithm starts by grouping the chunks into mega chunks as we have discussed
previously. Then, the graph structure is built from the set of mega chunks and the set of
sites. The capacities of the edges are set accordingly, however, the capacities of the edges
linking the site nodes to the sink node are left for a later step. The main loop performs a
binary search on the capacities range to find the optimal one; in each iteration, we first
compute the scaled capacities and then we set the capacities of the sink edges. Later on,
we run the flow algorithm to compute the total flow that goes through the network. If
the total flow is equal to the number of chunks, that means we can reduce the search
range to search for another solution that provides more load balancing. The other case
(total flow is less than chunk size) means that not all the chunks are matched and the
current solution is not valid, so we increase the lower limit of the search. When the
loop is finished, we run the flow algorithm with the optimal capacity found. At the end,
we create the set of chunks that should be requested from each site with respect to the
output of the flow algorithm.

The complexity of the algorithm is mainly related to the maximum flow algorithm
and the binary search. The complexity of the maximum flow algorithm (i.e., preflow-
push algorithm) is Op|V 1|2

a

|E 1|q. Where V 1 and E 1 are the sets of mega chunks and
corresponding edge respectively. The range length of the binary search is |C|, which
means that the algorithm iterates no more than log2p|C|q iterations. Putting together
the complexities of the two algorithms we find that the complexity of the scheduling
algorithm is Oplog2p|C|q ˚ |V 1|

2
a

|E 1|q.

6.4 Implementation

Nitro consists of roughly 1500 lines of Python code. The current implementation uses
Redis [238] as a storage backend to store VMIs, i.e., the chunks of the images. However,
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Algorithm 1: Network-aware chunk scheduling
Input : chunks, sites, chunks_mapping, bw_scaling
Output: chunks_request

1 mega_chunksÐcreate_mega_chunks pchunks, chunks_mappingq ;
2 GÐ build_bipartite_graph pmega_chunks, sitesq ;
3 low_cap, high_capÐ 1, nb_chunks ;
4 while low_cap ă high_cap do
5 capÐ plow_cap` high_capq{2 ;
6 scaled_capÐ cap ˚ bw_scaling ;
7 add_capacity_to_sink_edges pG, scaled_capq ;
8 max_flow pGq ;
9 total_flow Ð sum

nb_sites
site“1 F pGrsitesrsinksq ;

10 if total_flow “ nb_chunks then
11 high_capÐ cap ;
12 else
13 low_capÐ cap` 1 ;
14 end
15 end
16 optimal_capacity Ð low_cap ;
17 scaled_optimal_capacity Ð cap ˚ bw_scaling ;
18 add_capacity_to_sink_edges pG, scaled_optimal_capacityq ;
19 max_flow pGq ;
20 chunks_requestÐ tu ;
21 foreach site P sites do
22 chunks_requestrsites Ð Y remove_set_k

pmc, F pGrmcsrsitesqq : for mc P mega_chunks
23 end
24 return chunks_request ;

any key/value storage system can be used as a storage backend to Nitro. The source code
is publicly available at https://gitlab.inria.fr/jdarrous/nitro.

As shown in Figure 6.3, Nitro consists of two components: a proxy server and a
storage engine. The proxy server is responsible for handling all the requests to VMIs
including add, retrieve, etc. The storage backend is where the actual chunks are stored
and is implemented as a key/value store. Hereafter, we describe the system workflow.

6.4.1 System workflow

Bootstrapping

To deploy Nitro in a distributed environment, a daemon has to run in each data center.
On bootstrapping, these daemons are provided with the endpoint addresses of other
daemons.
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Figure 6.3: VM provisioning workflow. A VMI with 5 chunks is requested; 2 chunks are
available locally and 3 chunks are requested from other data centers. F for fingerprint
and C for chunk.

Adding a new image

New VMIs can be added to any site running the Nitro system. The image is split into fixed
chunk sizes of 256 KB. A list of references to these chunks is also created. This list is used
later to reconstruct the original VMI. These chunks are stored into the backend key/value
store along with the fingerprint list. The metadata is then propagated synchronously to
all other daemons. Then, the universally unique identifier (UUID) of the image is returned
to the client indicating the successful termination of the process.

Retrieving an image

The generated UUID, when adding the VMI, is used later to retrieve it from any other
location. Nitro reads the fingerprint list related to that UUID and checks the chunks
which are available locally. The list of missing chunks, in addition to the currently
available bandwidths between the current site and the other sites, are then transferred
to the scheduling module that computes the optimal transfer plan to retrieve the chunks
from other sites. After receiving all the previously missing chunks, these chunks are
stored (in Redis) and the original VMI is reconstructed and returned to the user.

6.4.2 On compressing data chunk in Nitro

To reduce the size of data transferred over WAN, we further enable data compression
on the chunks in Nitro. Chunk compression may result in different chunk sizes, and
therefore, may impact the optimality of the scheduling algorithm when retrieving chunks.
We discuss the trade-off between data compression and optimal chunks mapping in the
evaluation section (Section 6.6).
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6.5 Experimental Methodology

6.5.1 Dataset

The dataset consists of 24 VMIs (in raw format) with a size ranging from 2.5 GB to
6.5 GB for each. As our scheduling algorithm works on the chunk level and is not aware
of the total number of images in the system, a dataset of 24 images is sufficient to evaluate
the performance of Nitro.

The dataset is built by provisioning the following versions of eight base images (3
Debian: Wheezy, Jessie, and Stretch; 3 Fedora: Fedora-23, Fedora-24, and Fedora-25;
and 2 Ubuntu: Trusty and Xenial) with three software (Apache Cassandra, Apache
Hadoop, and LAMP stack) using Vagrant [279].

Table 6.1 presents the sizes of our dataset with different storage formats. The dedu-
plication and deduplication with compression rows represent the cases where each image
is deduplicated separately, without and with further chunk compression, respectively.
Whereas the corresponding rows with the (dataset) tag represent the case where all the
images of the dataset are deduplicated together, i.e., similar chunks of different VMIs are
discarded. The compression row gives the size of the dataset compressed in gzip format.
From the presented results, we can notice that applying compression with deduplication
(where each image is deduplicated separately) is slightly better than compression alone in
terms of data size reduction. However, deduplication with compression can by far reduce
the size of the data compared to compression alone, as the complete dataset is taken into
account. Moreover, the efficiency of deduplication – in contrast to compression – grows
when increasing the size of the dataset.

Table 6.1: Dataset sizes under different storage formats.

Image storage format Total size (GB)
raw 104.89
deduplication 50.65
deduplication (dataset) 25.11
compression 19.99
deduplication with compression 17.99
deduplication with compression (dataset) 8.66

6.5.2 Testbed

We perform our experiments on top of Grid’5000 [105], a French platform for experi-
menting distributed systems. We used for our experiments the Nova cluster at the site
of Lyon. Each machine in the cluster is equipped with two Intel Xeon E5-2620 v4 CPUs,
8 cores/CPU, 64 GB RAM and 600 GB HDD. The machines are interconnected with
10 Gbps Ethernet network. The nodes run Debian Linux 8.0.0 (jessie). The latency and
bandwidth between machines are emulated using tcconfig [270], a wrapper tool for the
Linux Traffic-Control tool [179].
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Table 6.2: Emulated network properties of 11 AWS regions.

Bandwidth (Mb/s) Latency (ms)
mean 67.28 179.97
std 41.70 79.19
min 16.76 27.20
25% 40.75 125.63
50% 56.20 171.40
75% 71.21 227.60
max 212.20 359.24

Network emulation

We emulate 11 AWS regions in our experiments, including Virginia, California, Oregon,
Ireland, Frankfurt, Tokyo, Seoul, Singapore, Sydney, Mumbai, and São Paulo. The
statistical description of the emulated network latency and bandwidth values between
those data centers can be found in Table 6.2. The actual values for bandwidth are taken
from a recent work [119], whereas the latency values can be found online1. The minimum
bandwidth is between Singapore and São Paulo while the maximum bandwidth is between
California and Oregon. The minimum latency is between California and Oregon while
the maximum latency is between São Paulo and Sydney.

6.5.3 System setup

We compare Nitro with three existing systems, namely OpenStack Swift, InterPlanetary
File System (IPFS) and BitTorrent.

Nitro. The key/value backend storage of Nitro is implemented using Redis [238], an
in-memory database. We configure Redis to use append-only log and to sync the
changes to the disk every second to ensure data persistence. Our chunk scheduling
algorithm is implemented on top of the min-cut max-flow algorithm provided by
the networkx python library version 2.0. We choose a chunks size of 256 KB which
provides an appropriate trade-off between higher compression ratio and minimal
metadata overhead. Also, 256 KB is the default chunk size for BitTorrent and
IPFS.

OpenStack Swift. Swift is the distributed object-store system in OpenStack, and it
is usually used as backend storage for image service. Swift supports multi-region
deployment. It has been running in production to store containers image for 8 data
centers in IBM clouds [17]. We perform our experiments with the Ocata version of
Swift [210]. The read and write affinity properties are configured according to the
bandwidth between the data centers.

IPFS. IPFS manifests as a potential solution for VMIs as it has built-in deduplica-
tion and it is designed to work in distributed environments. The IPFS version

1https://www.cloudping.co, November 2017
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0.4.10 [132] is used for evaluation. IPFS uses Leveldb [169], a key-value store, as
its backend storage system.

BitTorrent. BitTorrent is a classical peer-to-peer content distribution protocol. It is
widely used to distribute large multimedia files and linux distribution images. We
used the open-source BitTorrent client libtorrent [174] version 1.1.4 and open-
tracker [211] as a BitTorrent tracker in the experiments.

In our experiments, each data center is represented by one machine. For BitTorrent,
an additional machine is used to run the tracker with an emulated latency of 25 ms and
a bandwidth of 100 Mb/s to other machines. The images in the compressed format are
used as input by BitTorrent and Swift, and in the raw format by IPFS and Nitro as they
are going to be deduplicated (and compressed) later by each system.

6.6 Evaluation Results

For the evaluation, we first evaluate Nitro internals. Then, we evaluate Nitro against
other VMI management systems.

6.6.1 Effectiveness of Nitro

We evaluate the effectiveness of Nitro in three ways: 1) we show the impact of the global
deduplication; 2) we compare the network-aware scheduling with random scheduling; and
3) we evaluate the runtime of the network-aware algorithm.

Global deduplication

As we have discussed, the strength of deduplication compared to other compression tech-
niques is the detection of identical blocks of data (i.e., chunks) on the dataset level. There-
fore, with a larger dataset, we may obtain a higher compression ratio, as the chances of
finding identical blocks become higher. Here, we confirm the efficiency of deduplication
for VMIs and present its impact on our dataset.

To show the reduction in storage cost (and thus the reduction in network traffic when
retrieving a VMI), we measure the amount of locally available chunks for each newly
added VMI while adding the images sequentially (in a random order) to the same node.
In Figure 6.4a, the x-axis represents the size of the dataset and the y-axis shows the
number of locally available chunks and the missing chunks when adding (requesting) the
current VMI. We notice the increase of locally available chunks by each newly added
image. The lower area in blue represents the sum of chunks that are found locally for the
complete dataset, i.e., the save in the storage (network) cost. Note that the number of
locally available chunks for each image could be slightly different depending on the order
in which the images have been added, but we can always see the same trend.

Advantages of network-aware scheduling

We evaluate the effectiveness of our network-aware chunk scheduler by first comparing
it with the random chunk scheduler. In this experiment, each image in the dataset is
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Figure 6.4: Evaluation results for Nitro internals: (a) Show the constant increase in
redundant chunks (locally available) with the increase of dataset size (number of images)
by using deduplication. (b) Compare the transfer time of network-aware scheduler and
random scheduler. (c) Show how the transfer time of the two schedulers varies according
to the initial number of replicas.

initially added to three sites randomly chosen and then requested from a fourth site.
In Figure 6.4b, we present the provisioning time, i.e., network transfer time, for both
schedulers. Results show that the network-aware scheduling of Nitro reduces the average
provisioning time by 38% compared to the random scheduler.

We also evaluate the impact of the number of replicas on the transfer times as shown
in Figure 6.4c. The y-axis shows the normalized transfer time, however, note that the
reported transfer times for different number of replicas are not directly comparable as
they are measured on different nodes. With more replicas, the chunk scheduling problem
has a larger solution space as the chunks to be pulled are available on more sites. Thus, it
is possible to obtain better transfer time results with Nitro when the number of replicas
is large. For example, when the number of replicas is three, Nitro reduces the average
transfer time by 58% compared to the random scheduler. Whereas, if the chunks are
available in a single site, the algorithm has no choice other than pulling all missing
chunks from a single site (as we can see in the first column of Figure 6.4c). In conclusion,
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Table 6.3: Scheduling algorithm runtime (seconds).

Sites Number of MC Runtime with MC Runtime w/o MC
2 3 0.016 153.648
4 15 0.048 267.057
6 63 0.185 426.606
8 255 0.973 298.053
10 1023 8.035 2065.434
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Figure 6.5: Comparison between Nitro and IPFS in terms of (a) total transfer time during
the experiment and (b) total amount of transferred data over WAN.

having more sources of data can help to reduce the provisioning time.

Runtime of network-aware scheduling

The runtime of the scheduling algorithm depends on many factors, such as the number
of sites, number of chunks and the distribution of the chunks on sites as it determines the
number of Mega Chunks (MCs). We measure the runtime while increasing the number of
sites when pulling 10,000 chunks (representing 2.5 GB of data). We consider the worst-
case scenario for chunks mapping, i.e., there is at least one chunk that can be found in
each subset of sites. In this case, the number of mega chunks is 2|sites| ´ 1, as discussed
in Section 6.3. In Table 6.3, we compare the runtime of the algorithm with and without
the grouping optimization, i.e., Mega Chunks. The runtimes are reported in seconds and
measured using a machine with 2,7 GHz Intel i5 CPU and 16 GB RAM. Results show
that the grouping optimization can greatly reduce the runtime of the network-aware
scheduling algorithm by up to 99.6%.

6.6.2 Nitro vs. IPFS

We choose IPFS for comparison with Nitro as it shares some similar design principles as
Nitro. IPFS uses content-addressable storage to store data with deduplication applied.
It transfers data by exchanging chunks between peers. Also, similar to Nitro, IPFS does
not use compression. However, IPFS uses a Distributed Hash Table (DHT) to locate the
chunks, whereas Nitro maintains the global distribution of chunks.
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We compare the two systems in the same scenario as in the previous section with three
replicas for each image. Figure 6.5a shows that Nitro reduces the network transfer time
by 60% on average and 62% in the worst-case compared to IPFS. This can be explained
by the fact that IPFS requests data from all available peers which have the data. As can
be observed in Figure 6.5b, around 80 GB of data are transferred across the network with
IPFS which is almost three times the size of the dataset. This technique is used by IPFS
to tolerate network partitioning and weak links, but it results in high network cost.

6.6.3 Nitro vs. Swift and BitTorrent

We further compare Nitro against two other systems, namely Swift and BitTorrent. We
enable the chunk compression in Nitro as in the compared systems. Chunk compression
leads to different chunk sizes. As a result, the network-aware scheduling of Nitro does
not guarantee the optimal solution. However, we keep this setting for fair comparisons
with the other two systems. Although BitTorrent divides images into pieces, it does not
apply any kind of deduplication. On the other hand, Swift uses point-to-point replication
and internally relies on a modified version of rsync [205].

Provisioning time for single-site VMI request

In this scenario, we measure the transfer time for a single VMI request. Again, we set
three replicas for each image and request each image from a fourth site. Figure 6.6a
presents the results obtained by the studied systems. Nitro obtains the best network
transfer time results. On average, it reduces the time by 77% compared to Swift and 46%
compared to BitTorrent. Another observation is that, although Nitro does not guarantee
optimal provisioning time for compressed chunks, the optimized VMI transfer time is still
better than without compression when comparing Figure 6.6a with Figure 6.5a.

Provisioning time for multi-site VMI request

In our design, Nitro provides chunk scheduling solution without being aware of the cur-
rent status of the cloud system. Thus, it is possible to cause network contention when
multiple sites are requesting VMIs at the same time. To evaluate how serious the network
contention problem can get, we provision three VMs at the same time from three differ-
ent sites, where five replicas of each image are available on the same sites. Figure 6.6b
shows the obtained results. Nitro is still able to outperform the other two systems, with
53% and 90% reduction in the network transfer time compared to BitTorrent and Swift,
respectively. This is mainly because the deduplication with compression in Nitro can
reduce the size of data to be transferred across the network compared to compression
alone in Swift and BitTorrent (refer to Table 6.1) by 56%. Moreover, the fact that Swift
relies on point-to-point communication and cannot do the copy in parallel from different
sites lies it behind the other two systems.

Sensitivity study on replication

The efficiency of peer-to-peer systems increases when the number of participating peers
increases. Thus, we evaluate Nitro and BitTorrent when the participating sites, i.e., sites
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Figure 6.6: Comparison results of Nitro, Swift and BitTorrent: (a) The transfer time of
the systems when requesting one VMI to one site. (b) The transfer time of the systems
when requesting three VMIs to three sites, at the same time.
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Figure 6.7: Sensitivity study on replication for Nitro and BitTorrent when the data can
be found in 3,4, and 5 sites.

that have copies of the requested chunks, increase from three to five. Each image is
initially uploaded to three random sites. Then, three different random sites request the
image sequentially: the first site can request the image (chunks) from three locations,
while the second and the third sites can request the chunks from four and five locations,
respectively. We repeat the same steps for all the images. Figure 6.7 shows the normalized
network transfer time results.

We have two observations. First, the network transfer times of both Nitro and Bit-
Torrent decrease with the increase of the number of replicas. This is consistent with our
expectation. Second, Nitro outperforms BitTorrent in all cases, by up to 50%, mainly be-
cause Nitro leverages local chunks, thus, it transfers less amount of data over the network
compared to BitTorrent.
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6.7 Applicability and Limitations

In this section, we discuss the applicability and limitations of Nitro under different net-
work models, when requesting more than one VMs, and when employing file-level dedu-
plication.

6.7.1 Wide area network models

In the literature, there are mainly two models to represent WANs at the application level:

• pair-wise bandwidths: In this model, there is a specific bandwidth between each
pair of data centers. Therefore, the network is considered as a complete graph;
hence, a site can receive data from all the other sites in parallel without any degra-
dation in aggregated incoming bandwidth (i.e., each site has an infinite download
bandwidth). This model has been employed in many recent works [156, 283, 122,
119, 47].

• uplink/downlink bandwidth: In this model, each data center has a specific
bandwidth for its uplink/downlink with the assumption that the core network con-
necting these data centers is congestion-free (i.e., infinite core bandwidth). There-
fore, the bandwidth between two sites is computed as the minimum of the sender
upload link bandwidth and the receiver download link bandwidth. However, in this
case, other parameters are not taken into account (e.g., geographical proximity)
which lead to non-consistent pair-wise bandwidths. Moreover, selecting the refer-
ence point to compute the upload/download bandwidths is also problematic. This
model has been employed in some recent works [226, 318, 126].

Both models provide a good enough simplification for the application as the physical
characteristics of the network are hidden (e.g., redundant links, routers, switches, etc.).
In our work, we rely on the first network model as current software level approaches as
Traffic Engineering (TE) [115] and Software-Defined Networking (SDN) [31] are widely
employed to abstract the physical network topology from the application and ensure
some network properties (e.g., bandwidth) between sites. As a consequence, concurrent
retrieval of VMIs from different sites do not impact each other as these sites are connected
with dedicated links. However, the second network model has an impact on concurrent
retrieval of VMIs.

6.7.2 Network performance variability

Currently, Nitro has no mechanism to deal with the variation of network performance (i.e.,
bandwidth) during the retrieval of an image. Previous works have shown that the avail-
able bandwidth between two sites is relatively stable in the granularity of minutes [226],
or even 10 minutes [283] which is sufficient to complete a transfer (see Section 6.6).

6.7.3 Requesting multiple VMs from the same site

Although in our work we focus on single VMI request, our scheduling algorithm also
works when requesting multiple VMIs from the same site at the same time. This is
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Figure 6.8: The chunk schedule of the current and modified algorithms. Image-2 (X,Y,Z)
is requested at timestep 0 and image-1 (A,B,C,D) is requested at timestep 1. The band-
widths are homogeneous.

because our algorithm is oblivious to the number of VMIs and works at the chunk level.
On the other hand, in multi-tenant environments, requests for VMIs could come while
other VMI are being retrieved. However, the current scheduling algorithm assumes that
the network links are fully available, leading to non-optimal scheduling for the newly
requested images.

To illustrate the problem, we suppose a scenario with two images (image-1 and image-
2) and two sites (site-1 and site-2) connected with a third site with homogeneous band-
width for simplicity. Image-1 consists of four chunks: A, B, C, and D and it is available
on both sites, while image-2 consists of 3 chunks: X, Y, and Z and it is only available on
site-2. If image-2 is requested at timestep 0, its chunks will be pulled from site-2 as there
is no other option. Later on, if image-1 is requested at timestep 1, the current scheduler
will decide to pull two chunks from one site, and the other two chunks from the other site
to balance the load across sites, as it supposes that the links are fully available. However,
as the link to site-2 is busy with image-2, the scheduling of image-1 is not the optimal
one. The optimal scheduling is to retrieve one chunk (C or D) from site-1 and the three
remaining chunks from site-2, as shown in Figure 6.8.

To cope with this behavior, the current system state (i.e., the bandwidth usage) should
be considered by the chunks scheduler. In particular, the modifications only concern the
add_capacity_to_sink_edges method in Algorithm 1; when the capacities of the
sink edges are set, the current remaining chunks (i.e., chunks that are already requested
but not yet received) are taken into account (i.e., subtracted from the capacities of the
links). These modifications can be integrated easily into Nitro.

6.7.4 Discussion on file-level deduplication in Nitro

Nitro relies on fixed-size deduplication to reduce the network overhead and provide flexible
retrieval of images. However, using file-level deduplication instead could further reduce
the network overhead and provide more image management functionalities [241, 180].
Employing file-level deduplication leads to heterogeneous chunk sizes as file sizes vary
significantly; between few kilobytes and hundreds of megabytes [180]. A possible solution
is to apply fixed-size deduplication to the individual unique files. This solution can be
integrated seamlessly in Nitro and does not impact the optimality of the chunk scheduling
algorithm, but it may result in higher metadata overhead.
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6.8 Conclusion

In contrary to a single data center, service provisioning in geo-distributed clouds is im-
pacted by the WAN. Provisioning services in geo-distributed clouds require transferring
VMIs across the low-bandwidth and highly heterogeneous WAN. This might result in
longer provisioning time.

In this chapter, we introduce Nitro, a new VMI management system that is designed
specifically for geographically-distributed clouds to achieve fast service provisioning. Dif-
ferent from existing VMI management systems, which ignore the network heterogeneity
of WAN, Nitro incorporates two features to reduce the VMI transfer time across geo-
distributed data centers. First, it makes use of deduplication to reduce the amount of
data which is transferred due to the high similarities within an image and in-between im-
ages. Second, Nitro is equipped with a network-aware data transfer strategy to effectively
exploit links with high bandwidth when acquiring data and thus expedites the provision-
ing time. We evaluate Nitro by emulating real network topology. Results show that the
network-aware data transfer strategy offers the optimal solution when acquiring VMIs
while introducing minimal overhead. Moreover, Nitro outperforms state-of-the-art VMI
storage system (OpenStack Swift) by up to 77%. Finally, we pointed out the applicability
of Nitro for file-based deduplication and continuous image requests while discussing its
limitations when applied in different network representations.
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Edge computing extends the cloud by moving computation and storage resources phys-
ically close to data sources. The motivation behind that is to facilitate the deployment
of short-running and low-latency applications and services [93, 261].

In general, services are deployed as containers in Edge [135, 37, 5], therefore, container
images are needed to run those services. Provisioning a service in the Edge usually
requires pulling the corresponding container image over the wide area network (WAN)
from a central repository. This may result in long provisioning time which is unacceptable
for most Edge services and applications (i.e., latency-sensitive applications).

To this end, in this chapter, we consider another approach: instead of putting all
the container images in a central repository, we distribute these images across the Edge-
servers. Thus, trying to leverage the network bandwidth in-between them and exploit
small fractions of their available storage capacities. Accordingly, we propose and evaluate
through simulation two novel container image placement algorithms based on k-Center
optimization. In particular, we introduce a formal model to tackle down the problem
of reducing the maximum retrieval time of container images. Based on the model, we
propose two placement algorithms which target reducing the maximum retrieval time of
container images to any Edge-server. Simulation results show that the proposed algo-
rithms can outperform state-of-the-art algorithms.

This chapter is organized as follows. First, Section 7.1 introduces the limitation and
challenges of container provisioning in Edge computing. Next, the problem alongside the
proposed algorithms are formalized in Section 7.2. Simulation methodology is discussed
in Section 7.3. The obtained results are presented in Section 7.4 and discussed in more
details in Section 7.5. Finally, Section 7.6 concludes the chapter.

7.1 Container Provisioning in the Edge: Limitations
and Challenges

Traditional approaches for service provisioning, which rely on centralized repository lo-
cated in the cloud to store container images, may hinder the benefits of Edge in providing
fast service provisioning: the bandwidth between cloud and Edge-servers can be a few
tens of Mb/s [7, 107], thus, an image of a size of 1 GB needs at least 100 seconds to be
transferred to the Edge-server if the bandwidth is 10 Mb/s. Consequently, when scaling
out one of the killer applications in Edge such as live video stream analytics [237], it is
not acceptable to wait for hundreds of seconds to provision a new container while the
response time of this application is in the order of milliseconds. On the other hand,
keeping the container image in the cloud and pulling only a part of the image which
is enough to boot the container might improve the provisioning time, but it results in
a performance overhead to the running services as requests to the image will be made
over WAN [109, 75, 317]. Moreover, approaches which try to optimize the provisioning
time, by overlapping data transfer and data extraction [5] or by prefetching and caching
important layers [17], are still dictated by the amount of data which is pulled over WAN.
Hence, current efforts may fail in practice to achieve the desired provisioning time of
services in the Edge.

Alternatively, storing all the images locally is not feasible, especially as Edge-servers
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have limited storage capacity and the local storage is better to be exploited to store ap-
plication data instead of container images. However, given that Edge-servers are featured
with high network bandwidth among them compared to the bandwidth with clouds (e.g.,
running distributed IoT application on a cluster of Edge-servers is 5.3x times faster than
running it on clouds [304]); a possible solution is to distribute container images across
Edge-servers, thus, the network bandwidth and available storage (a small fraction) can
be exploited efficiently. Unlike most approaches in the cloud, container image retrieval
in Edge environments needs to be aware of the network heterogeneity between Edge-
servers. Even worse, container images and layers are highly heterogeneous. As a result,
the retrieval time depends on the image sizes and the distribution of their layers (and
the replicas: usually layers are replicated for performance and fault-tolerance); hence, it
is hard to predict the retrieval time of a container image.

In this chapter, we argue that the initial placement is important for fast service pro-
visioning in Edge environments. Moreover, a service can be provisioned on multiple
Edge-servers and an Edge-server may host multiple applications (e.g., camera devices
host multiple applications [237]), therefore, it is essential to ensure predictable provi-
sioning time as well. Our work tackles this problem (i.e., fast and predictable service
provisioning in the Edge) by introducing novel placement algorithms that target reduc-
ing the maximum retrieval time of an image to any Edge-server.

To the best of our knowledge, no previous studies have worked on container image
placement in Edge environments or targeted reducing the maximum retrieval time of con-
tainer images.

7.2 Container Image Placement

In this section, we introduce the formal model we use to study the container image
placement problem. We also introduce the two heuristics we propose to distribute a set
of replicated layers through a network (across Edge-servers). In Section 7.2.1, we focus
only on a set of individual layers and try to optimize the maximal retrieval time. In
Section 7.2.2, we show how to extend the problem to a set of images (that are themselves
sets of layers) and how to adapt our placement.

7.2.1 Layer placement

Formal model

For the moment, we focus on layers placement and put aside complete images. First, a
layer li is defined by its size si (i.e., its storage cost) and its replication number ni (i.e.,
how many times a layer is replicated). We denote by Li “ tl1i , . . . ,l

ni
i u the replicas of li.

In the following, the complete set of layers is denoted as L and LR represents the set of
replicas (LR “

Ť

Li).
In our model, the infrastructure is defined as a set of nodes V that are fully connected

(thus a complete graph). We denote as c the storage capacity of all nodes (the allocated
storage space on each node). For all the pairs of nodes u,v, we denote as buv the bandwidth
between these two nodes (if u “ v then bu,v “ `8).
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Given a set of layers L, a set of nodes V and a storage capacity c, we define a placement
as a function σ from LR to V (we want to place all replicas). A placement is said to be
valid if for each u P V ,

ř

lki Pσ
´1puq si ď c (i.e., the sum of the sizes of stored replicas does

not exceed the storage capacity) and for each k,k1 P r1,nis, σplki q ‰ σplk
1

i q (i.e., replicas of
the same layer have to be placed on different nodes).

From a valid placement, we derive the retrieval time of a layer li on a node u as
follows. Let uσi be the node owning a replica of li that is the closest to u (i.e., with
maximal bandwidth, formally uσi “ argpmaxvPσpLiq buv). The retrieval time of li on u is
thus T ui “

si
buuσ

i

. Our goal here is to minimize the maximal retrieval time for all layers on
all nodes. We denote this problem MaxLayerRetrievalTime.

Problem 1 (MaxLayerRetrievalTime). Let V be a set of nodes with storage capacity c
and L be a set of layers. Return a valid placement that minimizes: max

uPV, liPL
T ui .

MaxLayerRetrievalTime is close to the k-Center problem, that aims to place facilities
on a set of nodes to minimize the distance from any node to the closest facility. See below
for a formal definition.

Problem 2 (k-Center). Given a set V with a distance function d (defined between all
elements of V ), and a parameter k, return a set S Ď V such that |S| “ k that minimizes:
max
uPV

min
vPS

dpu,vq.

MaxLayerRetrievalTime is similar to the k-Center problem if considering only one
layer. k-Center problem is known for being NP-complete [94] and thus MaxLayerRe-
trievalTime is also NP-complete. In addition, it has been proven that the best possible
approximation is a 2-approximation (unless P=NP) [120].

The solution we introduce to solve MaxLayerRetrievalTime is based on a solver for
k-Center. The basic principle of this heuristic, KCBP (k-Center-Based Placement), is to
sort the layers in descending order by their sizes and then use this solver several times to
place replicas, one layer after another. The distance used is the inverse of bandwidths.
A pseudo-code of KCBP is provided in Algorithm 2.

For our implementation, we use Scr, a polynomial k-Center problem solver that was
introduced by Robič and Mihelič [246]. Scr is based on a pruning technique (i.e., remov-
ing some edges and find a solution on the induced subgraph) and a Dominant Set problem
solver (as the Dominant Set problem is also NP-complete, Scr relies on a heuristic). Note
that Scr is a 2-approximation, but its experimental average approximation factor is far
better and as far as we know the best among polynomial heuristics: 1.058 for Scr on a
classical benchmark for graph partitioning [246].

The time complexity of Scr is Opm2 logmq, where m is the number of nodes. Hence,
the overall complexity of KCBP is Op|L||V |2 log |V |q.

7.2.2 Image placement

MaxLayerRetrievalTime focuses on layer retrieval. However, as we target the retrieval of
complete container images, in this section, we formalize and present MaxImageRetrieval-
Time.
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Algorithm 2: k-Center-Based Placement
Input : L, V , c
Output: σ

1 Sort L by decreasing size ;
2 foreach u P V do
3 cu “ c ;
4 end
5 foreach li P L do
6 V 1 “ tu P V, cu ě siu ;
7 S “ ScrpV 1,niq ;
8 k “ 1 ;
9 foreach u P S do

10 σplki q “ u ;
11 k `` ;
12 cu Ð cu ´ si ;
13 end
14 end
15 return σ ;

Formal definition

We define an image as a set of layers Ij “ tli1 , . . . ,liqu. The complete set of images is
denoted as I. To retrieve an image Ij, a node u has to download a replica of each layer
that is in Ij. As a first approximation, we could consider the downloads are performed
in parallel and thus the retrieval time is defined by the largest retrieval time among
these different layers (as in MaxLayerRetrievalTime). However, multiple downloads from
the same source may degrade the performance by reducing the bandwidth. Therefore,
in our model, we consider that if a node requests an image that requires several layers
where the closest replicas are on the same node, then the download of these replicas is
made sequentially (that is equivalent to do it in parallel with shared bandwidth). More
formally, given an image Ij, a valid placement σ, and a node u P V , let V σ

u,Ij
“ tv P V, li P

Ij and uσi “ vu the set of nodes that are the closest nodes to u for at least one replica of
the layers of Ij. The retrieval time of an image Ij is thus:

T uIj “ max
vPV σu,Ij

ř

i,uσi “v

si

buv
.

We define now MaxImageRetrievalTime where the goal is to minimize the maximal
retrieval time of a set of images.

Problem 3 (MaxImageRetrievalTime). Let V be a set of nodes with storage capacity c
and I be a set of images. Return a valid placement that minimizes: max

uPV,IjPI
T uIj .
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Algorithm 3: k-Center-Based Placement Without-Conflict
Input : I, L, V , c, f
Output: σ

1 Sort L by decreasing size ;
2 foreach u P V do
3 cu “ c ;
4 end
5 foreach li P L do
6 V 1 “ tu P V, cu ě siu ;
7 if li is one of the f% largest layer then
8 foreach Ij P I such that li P Ij do
9 V 1 Ð V 1ztu P V 1, Dli1 P Ij, σpl

k
i1q “ uu

10 end
11 end
12 S “ ScrpV 1,niq ;
13 k “ 1 ;
14 foreach u P S do
15 σplki q “ u ;
16 k `` ;
17 cu Ð cu ´ si ;
18 end
19 end
20 return σ ;

Without-Conflict

If two layers are part of the same image, then their replicas should not be on the same
nodes. However, applying this constraint to all layers can lead to a large spreading of the
replicas and even to a lack of eligible nodes (i.e., nodes with enough remaining storage
capacities and have no conflicting layers). Thus, we limit the number of layers that are
concerned. More precisely, we add a parameter f that is a percentage of the layers. If
a layer li is among the f% largest layers, then this layer cannot be placed on a node
that already has a replica of a layer li1 which belongs to the same image Ij. We denote
this algorithm KCBP-WC (KCBP-Without-Conflict) and a pseudo-code is provided in
Algorithm 3.

7.2.3 Limitations

To simplify the modeling of the problem, we assume that there is a direct link between
each pair of Edge-servers. Though, this is a strong assumption, but it may be somewhat
satisfied with current (continuous) progress in software level approaches, as discussed in
Section 6.7, which tries to abstract the complexity of the underlying network hardware.
Thus, the general trend of the relative performance between the placement algorithm
could be preserved. Note that this is the first work on the domain of container image
placement in Edge environments where the main goal is to shed light on the importance
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Table 7.1: The sizes and links bandwidths characteristics of the studied networks.

Network Number
of nodes

Links bandwidths (b/s)
min 25th median 75th max

Homogeneous 50 4G 4G 4G 4G 4G
Low 50 8M 763M 1G 2G 8G
High 50 478M 5G 6G 7G 8G
Uniform 50 8M 2G 4G 6G 8G
Renater 38 102M 126M 132M 139M 155M
Sanet 35 63M 6G 8G 8G 10G

of container image placement in the Edge, thus assuming this simplification.

7.3 Simulation Methodology

We developed a simulator in Python to evaluate the performance of the two proposed
placement algorithms on different networks and using a production container image
dataset.

Our simulator is written in Python and the source code is publicly available at https:
//gitlab.inria.fr/jdarrous/image-placement-edge.

7.3.1 Network topology

We generate synthetic networks with different bandwidth characteristics and use real-
world networks topologies for our evaluation. All the networks are described in Table 7.1.

Synthetic networks

As we consider that network topologies have no interference, we generate complete graphs
(i.e., there is a direct link between each pair of nodes) and then assign bandwidths to these
links. Four distributions have been considered: (1) Homogeneous : where all the links have
the same bandwidth. (2) Low : where the majority of the links have low bandwidth. (3)
High: where the majority of the links have high bandwidth. (4) Uniform: where the
links bandwidths follow a uniform distribution between 8 Mb/s and 8 Gb/s.

Real-world networks

In addition to synthetic networks, we choose two real-world networks to demonstrate
the applicability of our algorithms. We select the national networks of France (Renater)
and Slovakia (Sanet) [271]. When two nodes are not directly connected, we set the
bandwidth between these nodes to the minimum bandwidth of the links that form the
shortest unweighted path between these two nodes [152].
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7.3.2 Container images dataset

Container images and their corresponding layers are retrieved from publicly released IBM
Cloud traces [17]. We extract the images and layers from the traces of Frankfort data
center. The dataset is composed of 996 images with 5672 layers, see Table 7.2. The
majority of these images (56%) have between 5 and 15 layers, however, some images are
composed by up to 34 layers, see Figure 7.1a. The layers are highly heterogeneous in
size (vary from 100 B to 1 GB). Moreover, 30% of the layers are larger than 1 MB, see
Figure 7.1b.

Table 7.2: The characteristics of the considered image dataset.

Total number of images 996
Total size of images 93.76 GB
Total number of layers 5672
Total size of unique layers 74.25 GB
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Figure 7.1: The characteristics of layers.

7.3.3 Node storage capacity

For each network, we limit the nodes’ capacities according to the total dataset size and
number of nodes. First, the theoretical minimum node capacity that is needed to store all
the layers (considering that the layers can be split at a byte level) is equal to the dataset
size (with replication) divided by the number of nodes. However, this capacity does
not satisfy any placement in practice as the integrity of the layers should be preserved.
This can be achieved by storing only a complete layer on the same node. Therefore, we
set the nodes’ capacities as the theoretical minimum capacity multiplied by a capacity
scaling factor. In our experiments, we test the following values for the capacity scaling
factor: 1.1, 2, and INF . We include INF – which represents unlimited storage – just
for comparison.
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7.3.4 State-of-the-art placement algorithms

We compare our proposed algorithms with two placements algorithms: Random and
Greedy (Best-Fit). These algorithms are not network-aware (i.e., they do not take into
account links bandwidths) and serve as a comparison baseline.

Best-Fit placement

The Best-Fit placement is a greedy algorithm to place layers on nodes. The algorithm
places the replicas of a layer li on the ni nodes with the largest remaining storage capacity.
The algorithm iterates over all the layers sorted by their decreasing size. As a result,
Best-Fit distributes the layers evenly on the nodes in such a way that the nodes have
almost the same total storage cost. When the layers have the same size, Best-Fit behaves
similar to a round-robin distribution. The algorithm is deterministic when the nodes are
initially presented in the same order, therefore, we shuffle the initial nodes ordering in
every iteration to obtain a different placement.

Random placement

The Random placement serves as a base solution. The algorithm distributes the layers
randomly on the nodes. For each layer, we filter out the nodes that do not have sufficient
storage space to host that layer, and then we select r random nodes to place the layer’s
replicas.

7.3.5 Methodology

For our experiments, we consider a default replication factor of 3 (as many storage sys-
tems [263]) for each layer (ni “ 3 for all i), therefore, the total dataset size with repli-
cation is 3 ˆ 74.25 GB. For KCBP-WC, we set the limit to define the “large” layers to
10%. For Best-Fit and Random placement algorithms, we run the placement 50 times
and we draw the average retrieval time as well as the variation. KCBP and KCBP-WC
are deterministic.

7.4 Simulation Results

In this section, we present the results of our simulations on the container image dataset
presented earlier. We first focus on synthetic networks before considering real-world
networks.

7.4.1 Results for synthetic networks

We would like to note that even though the retrieval times are presented in seconds, their
relative values are more important than their absolute ones as the absolute retrieval time
depends on the bandwidths of the network. Similarly, for the synthetic networks, the
distribution of link bandwidths is the important factor, not their actual values.
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(d) Uniform Network

Figure 7.2: Retrieval time for synthetic networks.

Homogeneous Network

All the links in the Homogeneous network have the same bandwidth, therefore, all the
nodes have the same priority to place a layer. Figure 7.2a shows the retrieval times of
the placement algorithms when varying the capacity scaling factor. When the capacity
scaling factor is set to 2, KCBP-WC has a maximum retrieval time of 1.97s , which is
1.8x faster than KCBP that needs 3.71s .

With homogeneous link bandwidths, placing layers of the same image on the same
node can prolong the retrieval time as in the case of KCBP. KCBP-WC handles this by
distributing the layers of the same images. Moreover, as the bandwidths are homogeneous,
we can notice that the performance of KCBP-WC is similar to Best-Fit and Random
because the links bandwidths have no impact on the optimal placement. Best-Fit has the
same maximum retrieval time of KCBP-WC (i.e., 1.97s), while the maximum retrieval
time of Random is 2.05s .

74



7.4. SIMULATION RESULTS

1
KCBP

2
KCBP-WC

3
Best-Fit

4
Random

Placement strategy

0

1

2

3

4

R
e
tr

ie
v
a
l 
ti

m
e
 (

s
e
c
)

(a) Homogeneous Network

1
KCBP

2
KCBP-WC

3
Best-Fit

4
Random

Placement strategy

0

2

4

6

8

10

12

R
e
tr

ie
v
a
l 
ti

m
e
 (

s
e
c
)

(b) Low Network

1
KCBP

2
KCBP-WC

3
Best-Fit

4
Random

Placement strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
tr

ie
v
a
l 
ti

m
e
 (

s
e
c
)
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(d) Uniform Network

Figure 7.3: Retrieval time for synthetic networks where the best obtained solution is
shown for Best-Fit and Random.

Low Network

In this network, the majority of the nodes are not well connected, therefore, the placement
of the layers (especially large ones) is critical for the retrieval performance. Best-Fit and
Random experience a high variation in retrieval times and their best-found placements
are still worse than that of KCBP-WC (Figure 7.2b and Figure 7.3b). For example, for
a capacity scaling factor of 2, KCBP-WC achieves 7.85s while KCBP requires 10.09s .
Best-Fit and Random have an average retrieval time of 23.15s and 26.63s , while their
best retrieval times are 12.63s and 11.35s , respectively.

High Network

In the High network, the majority of links have high bandwidths, which shows that many
nodes are well connected to the rest. In contrary to the Low network, the probability
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(b) Sanet Network

Figure 7.4: Retrieval time for real-world networks.

of placing a “large” layer on a low-connected node is smaller, and therefore, we notice a
smaller variation in the performance for Best-Fit and Random. Moreover, Best-Fit and
Random have better retrieval times than KCBP-WC in their best case (Figure 7.3c).
They achieve 1.34s and 1.36s , respectively, while KCBP-WC has a retrieval time of 1.50s
in case of capacity scaling factor of 2. Figure 7.2c depicts the results.

Uniform Network

The Uniform Network (Figure 7.2d) shows a similar trend to the Low network as both
networks have a high percentage of low-bandwidth links and therefore low-connected
nodes. We can notice that Best-Fit and Random exhibit high variation and KCBP-WC
has better retrieval time even compared to their best case (Figure 7.3d).

7.4.2 Results for real-world networks

Renater Network

Renater Network exhibits only small variations for links bandwidths, therefore, it shows
similar behavior to the Homogeneous network. For example, as we can see in Figure 7.4a,
for a capacity scaling factor of 2, KCBP-WC has a maximum retrieval time of 53s while
KCBP achieves 104s , which is more or less the ratio expected according to previous
results on homogeneous bandwidth. Similarly to the Homogeneous network, we can see
that the retrieval times of KCBP-WC are close to those of Best-Fit and Random.

Sanet Network

With Sanet network, the majority of links have high bandwidth (the bandwidths of
75% of the links are higher than 6 Gb/s). Thus, the results are close to that of High
network. However, contrary to the High network, in this setup, KCBP performs better
with increasing nodes capacities. For example, it achieves 82s , 68s , and 1.8s for 1.1, 2,
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Figure 7.5: Retrieval time for KCBP-WC algorithm with different values for the f pa-
rameter on synthetic networks.

and INF capacity scaling factors, respectively (Figure 7.4b). The number of nodes (i.e.,
35 against 50 for Sanet and High network, respectively) is the main reason behind the
improvement of KCBP with Sanet compared to its performance with High network, as
it increases the chance of placing layers on more central nodes. Similarly to the High
network, KCBP-WC archives lower maximal retrieval times compared to Best-Fit and
Random (73s , 81s , and 83s respectively for a capacity scaling of 1.1).

7.5 Discussion

In this section, we discuss the previous results and highlight our findings. We focus on
six aspects: conflicts, heterogeneity of the bandwidth, storage capacity, percentage of
layers considered as large for KCBP-WC, optimal retrieval, and maximal retrieval time
per image.
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Figure 7.6: Retrieval time of individual layers for synthetic networks.

7.5.1 Impact of conflicts

In Figure 7.6, we provide the maximum retrieval time for layers instead of images to
evaluate the impact of conflict. As expected, all strategies are not impacted the same
way. For example, KCBP doubles its retrieval time when images are considered instead
of individual layers on the High network (Figure 7.2c and Figure 7.6b). However, for
KCBP-WC, the impact is small (more obvious with INF capacity) as the algorithm
avoids as much as possible putting layers of the same image on the same node. In the
case of Random and Best-Fit, as they tend to produce close to even distribution of layers
across the nodes, the probability of having more than one “large” layer on the same node
is less than the case of KCBP and KCBP-WC, thus, conflicts between large layers are
rare. Thus, in general, avoiding conflict is an important factor to consider while placing
replicas.

7.5.2 Impact of the heterogeneity of the bandwidth

As expected, having nodes with different connectivity change the behavior of the place-
ment strategies. Here, bandwidth-aware strategies can deal more efficiently with this
heterogeneity, even when it is small (as in case of Renater network). However, we note
some important differences between High and Low networks. In the first case, the dif-
ference in retrieval times between KCBP-WC and average values of Best-Fit or Random
is small, and the variation in the performances of the last two is rather low. For Low
network, this variation greatly increases as does the average performance. In this case,
the performance of KCBP is even close to KCBP-WC. However, this does not apply to
High network. Hence, it seems that centrality of layers is more important for Low net-
work than for High network. In the first case, it is important to target a few nodes with
high connectivity while in the second it is important to avoid the few nodes with low
connectivity (at least for the largest layers). Thus, in Low network, KCBP compensates
the conflicts with general good connectivity in comparison to the other node, while in
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High network, the nodes used by KCBP are not that much better than the average ones.
At the same time, it is easier for Best-Fit and Random to avoid few low connectivity
nodes than to reach the few high connectivity ones. KCBP-WC can manage both situa-
tions when the number of nodes is sufficient, otherwise, as in Sanet, it may suffer from
the spreading of the layers, as Best-Fit and Random do. Note that in Uniform network,
where bandwidths differ significantly, KCBP-WC and KCBP perform well, even against
the best results from Best-Fit and Random for KCBP-WC.

7.5.3 The extra space effect

A phenomenon that is interesting to point out is the fact that the performances of KCBP
and KCBP-WC can be improved by decreasing the node capacity. For example, this
effect is visible for KCBP-WC on the Homogeneous network, and for KCBP on all the
networks. The reason for this phenomenon is that several layers of the same image are
more likely to be placed on the same node (and thus retrieved from the same node) when
the node capacity is larger. As explained earlier, we proposed KCBP-WC to avoid such
placements that are common with KCBP. However, to avoid having layers dispersed on
too many nodes (or not being able to place all layers), we only apply this strategy on
“large” layers, implying that, in some cases, the placement of layers of the same image
still happens and thus slightly decreases the performances.

7.5.4 Impact of the percentage of layers concerned by KCBP-WC
mechanism

Increasing the percentage of layers considered as “large” in KCBP-WC leads to a diminu-
tion of conflicts that should result in decreasing the retrieval time. However, it may also
spread layers on nodes with low connectivity, leading to potentially longer retrieval times
for some layers (and thus images). The extreme case is when there are no remaining
nodes with enough storage capacity. As a result, KCBP-WC does not return a valid
placement. This was the case on Sanet network which has only a small number of nodes
(Figure 7.4b). When testing different values for this percentage (5%, 10%, and 20%) as
shown in Figure 7.5, we observe almost no difference between them, except that with
20%. Moreover, the algorithm does not succeed to find a solution when the capacity
factor is 1.1 on Homogeneous network.

We cannot give a general conclusion from this result, as it is strongly correlated with
the container image dataset, but it appears here that avoiding conflicts between only the
large layers is enough and expanding this policy to smaller ones offers no clear gain.

7.5.5 The impact of optimal retrieval

As the goal of this work is the placement of container images, we rely on representa-
tive retrieval algorithm (i.e., retrieve from the closest replica) [227, 147] to evaluate the
performance of the placement. However, to show the importance of data placement, we
compared the performance of the different placement algorithms with closest replica re-
trieval and optimal retrieval. We implement the optimal retrieval of an image by simply
testing all the possible combinations of its layers retrievals and select the best one.
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Figure 7.7: Optimal retrieval time for synthetic networks.

Figure 7.7 shows the maximum retrieval time for Low and High synthetic networks
with both closest replica and optimal retrievals in case of INF capacity scaling. We
observe that optimal retrieval shows no improvement under Best-Fit and Random for
both networks compared to closest replica retrieval (expect a 5% improvement for High
network under Random). More importantly, the performance of both retrieval algorithms
is better under KCBP-WC compared to even the optimal retrieval algorithm when applied
to Best-Fit and Random. This demonstrates the importance of the initial placement of
layers on the retrieval time of container images.

On the other hand, we observe that the highest improvement of optimal retrieval can
be seen under KCBP (30% and 42% for Low and High networks, respectively). As KCBP
concentrates layers on the same nodes, optimal retrieval prefers to retrieve some layers
from another replica to increase the parallel retrieval. Optimal retrieval under KCBP-
WC achieves around 9% improvement in maximal retrieval time for both networks. This
is because some layers are not large enough to be included in the set of “large” layers
of KCBP-WC, but are large enough to impact the retrieval time if placed on the same
nodes that host “large” layers. Moreover, the results show that better maximal retrieval
can be achieved with KCBP-WC (under both closest replica and optimal retrievals) than
that with KCBP under optimal retrieval which validates the importance of the proposed
KCBP-WC. In summary, while the placement as well as the retrieval of containers (i.e.,
layers) are important to achieve fast container provisioning time, however, the maximum
benefit (the best provisioning performance) can be achieved when both are combined.

7.5.6 Maximal retrieval time per image

In this paragraph, we discuss the maximal retrieval time per image (i.e., the maximal
time to retrieve an image to any node). The cumulative distribution functions (CDFs)
are presented in Figure 7.8 for synthetic networks with capacity scaling factor of 2. We
notice that the performances are close for all strategies in case of Homogeneous and
High networks (Figure 7.8a and Figure 7.8c), with Best-Fit performing slightly better
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Figure 7.8: CDF of maximal retrieval time per image for synthetic networks with storage
capacity scaling factor of 2.

for a portion of the images (i.e., around 20% of the images on High network). On such
networks, the overall high quality of links does not favor strategies that aim to spread as
little as possible the different replicas, as pointed out earlier when evaluating the impact
of bandwidth heterogeneity. Besides, KCBP and KCBP-WC favor the large layers, that
may slightly degrade performances for images with smaller layers. Combined, these two
reasons fully explain these results in comparison to the overall equal distribution of layers
among the nodes proposed by Best-Fit (even if the difference is not that important).
However, for Low and Uniform networks (Figure 7.8b and Figure 7.8d) the trends are
different. In these networks, centrality is important and thus KCBP and KCBP-WC
perform well, even when we are considering other images than the ones with maximal
retrieval times. More precisely, KCBP and KCBP-WC present better maximal retrieval
times for 20% of the images (images with longest retrieval time), with a small advantage
for KCBP-WC that also performs better for other images. On Uniform network, KCBP
outperforms all other strategies, at the exception of KCBP-WC that has finally a better
overall maximum retrieval time (Figure 7.2d).

From these distribution functions, we observe that although KCBP and KCBP-WC
mainly target large layers (and the images they belong to), their performances are “good
enough” compared to Best-Fit, when considering all images. Note that, Best-Fit can
propose better retrieval times for intermediate images when network bandwidth is overall
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high. In a network with lower connectivity, the centralization of layers we propose with
KCBP and KCBP-WC allows general improvement of maximal retrieval time for images.

7.6 Conclusion

Service image management in Edge environments, especially container images, is gaining
more attention with the wide adoption of Edge computing. In this chapter, we propose
to store the images across the Edge-servers, in a way that the missing layers of an image
could be retrieved from nearby Edge-servers. The main goal behind this approach is to
ensure predictable and reduced service provisioning time. To this end, we have proposed
two image placement algorithms based on k-Center optimization to reduce the maximum
retrieval time for an image to any Edge-server. Through extensive simulation, using
synthetic and real-world networks with a production container image dataset, we have
shown that our proposed algorithms can reduce the maximum provisioning time by 1.1x
to 4x compared to Random and Best-Fit based placements.
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Erasure Coding in Distributed Storage
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Replication has been successfully employed and practiced to ensure high data avail-
ability in large-scale distributed storage systems. However, with the relentless growth of
Big Data and the wide adoption of high-speed yet expensive storage devices (i.e., SSDs
and DRAMs) in storage systems, replication has become expensive [234, 252, 316, 110]
in terms of storage cost and hardware cost. In recent years, erasure coding (EC) has
become prevalent in distributed storage systems, owing to the low storage cost and the
progress made in reducing its computation overhead [131]. For instance, EC has been in-
tegrated into the last major release of Hadoop Distributed File System (i.e., HDFS 3.0.0)
which is the primary storage backend for data analytics frameworks (e.g., Hadoop [19],
Spark [20], Flink [18], etc.). This facilitates running cost-effective data-intensive appli-
cations under EC, but introduces several challenges related to data locality and network
overhead. Accordingly, in this part, by the means of experimental evaluation, we study
the performance of data-intensive applications under EC and reveal its main effects of
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their performances. In addition, we design and evaluate a new data placement algorithm
in Hadoop to improve the performance of data processing under EC.

In this chapter, we review the different application domains where EC has been em-
ployed and then, we present how EC is implemented in HDFS. After that, we present
the state-of-the-art data processing under erasure coding and conclude this chapter. We
remind the reader that the principles of EC have been presented in Section 4.2.

8.1 Application Domain for Erasure Codes

Besides low storage overhead, erasure coding can provide high data availability and dura-
bility, moreover, it could be leveraged to provide fast data access. Hereafter, we show the
evolution of the deployment of EC, from archiving systems that ensure the durability of
cold data, to in-memory systems that are optimized for low-latency access to hot data.

8.1.1 Erasure codes in archival systems: Higher data durability

Thanks to its cost-efficiency while being able to tolerate several simultaneous failures, EC
has been extensively employed in archiving and durable storage systems. Some examples
of these systems are presented below.

OceanStore [160] is a peer-to-peer distributed storage system that provides continuous
access to persistent information which is usually encoded and stored in an infrastructure
composed of untrusted servers. Glacier [108] is a middleware that ensures the long-
term durability of the data against large-scale and correlated failures by leveraging EC.
Pelican [32] is a storage system that is designed to reduce the total cost of ownership
by restricting the number of active machines and encoding its data. Moreover, EC (i.e.,
with XOR codes) is used in Facebook’s f4 storage system to provide durability of the
data in geo-distributed infrastructures [195]. Microsoft Giza [52] employs EC to provide
catastrophic fault tolerance across geo-distributed data centers.

8.1.2 Erasure codes in storage systems: Lower storage overhead

To reduce the storage cost, mainly for cold data, EC has been integrated into many
distributed storage systems. Hereafter, we present some examples of these systems.

Windows Azure Storage [123] is a cloud-based storage system that employs EC along-
side replication to store data segments (i.e., collections of files and objects). The seg-
ments are scanned periodically and encoded when they are sealed (reached a specified
size threshold and become immutable). Facebook’s f4 storage system [195] employs EC
as a cost-effective alternative to replication to store worm BLOBs. Worm BLOBs are
large immutable binary data, written-once read-many, and are not frequently accessed.
Baidu’s key/value cloud-based storage system, Atlas [165], employs EC to achieve effi-
cient storage for its data as most of the data in their cloud are rarely accessed. Atlas
adopts hybrid data protection; while the metadata are 3-way replicated, the data are en-
coded, providing both space efficiency and access efficiency for metadata. Moreover, many
cloud-based object stores and distributed file systems support EC such as Ceph [291],
OpenStack Swift [78], Google Colossus (the successor of GFS) [86], QuantcastFS [213],
and Liquid [183].
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8.1.3 Erasure codes for in-memory caching systems: Fast data
access

In two decades, the encoding and decoding speed of EC has increased significantly from
10 MB/s [245] to around 5 GB/s [312] thanks to Intel Intelligent Storage Acceleration
Library (ISA-L) [131]. This reduction of CPU overhead, in addition to the reduced
storage cost, motives the employment of EC for in-memory storage systems like key/value
stores [312, 230, 256, 307].

EC-Cache [230] is an in-memory caching system that employs EC to provide more load
balance between the servers compared to selective replication while reducing the storage
overhead. This is done by using late binding technique (requesting n ` 1 chunks and
recover the data from the first n chunks that arrive), however, additional bandwidth is
required. Cocytus [312] is an in-memory key/value store that is designed to handle small
objects ranging from 1 KB to 16 KB. Cocytus employs a hybrid-encoding: by encoding
the value part while it replicates the key, metadata, and small-sized values. Moreover, EC
has been used with Remote Direct Memory Access (RDMA)-based key/value stores [256].
It has been shown that the proposed design can outperform synchronous RDMA-based
replication for large key/value sizes (> 16 KB).

8.1.4 Discussion

Erasure coding has been successfully applied in practice, from archiving to caching, to
provide reliable and efficient data access. Moreover, it has been recently introduced
in HDFS which is the primary storage backend for data analytics frameworks. This
integration facilitates the execution of data-intensive applications under erasure-coded
data which can greatly reduce the storage cost for data analytics, especially for large
datasets.

8.2 Data Layout in Erasure Codes

In general, storage systems use different ways to map logical blocks to physical ones. In
this section, we present the two representations (i.e., data layouts) that are used to map
erasure-coded data blocks.

The mapping between an original (logical) data block and its physical representation
can be either contiguous or striped. This mapping does not impact the availability of the
data, however, it greatly influences the access performance, the computation overhead,
and the storage overhead (for small data blocks).

Figure 8.1 depicts the representation of 6 blocks with a contiguous layout and one
block with a striped layout under RSp6, 3q. Under the contiguous layout, each physical
block represents an original block, and the parity blocks are computed from a set of data
blocks (6 in this example). While under the striped layout, one block is represented
physically by multiple chunks (6 in this example), and the parity chunks are computed
solely from the data chunks of that block.
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Figure 8.1: Illustration of EC with contiguous and striped layouts (adopted from [316]).

8.3 Erasure Codes in HDFS

Facebook has implemented the first prototype that integrates EC with HDFS under the
name of HDFS-RAID [111, 82]. Blocks are initially stored as replicated, while periodic
MapReduce jobs are launched to scan all the blocks in the system and erasure code cold
blocks (i.e., blocks that have been created for over one hour) asynchronously. This is
done by reducing the replication factor of the data blocks to one and creating the extra
parity blocks. However, EC was officially integrated into HDFS in 2018, in the third
major release of Hadoop ecosystem [110]. In this thesis, we study EC in the context of
HDFS as its the de-facto storage backend for data analytics. Hereafter, we describe the
block layout, the concept of EC groups, and the storage policies in HDFS.

Data block layout

Previous efforts to adopt EC in HDFS have implemented EC with contiguous layout [82,
315, 252, 172], however, in the first official release of EC in HDFS, Hadoop community
has adopted the striped layout. The main reasons for favoring EC with striped layout
are: First, it is more efficient for small files [110] which are prominent in data-intensive
clusters [82, 201]. For example, in case of RSp6, 3q, a file with a size of one HDFS
block incurs a 300% storage overhead [316], under contiguous block layout, as three
parity blocks are still needed. Though aggregating these small files might reduce the
problem [82, 315] but it results in more management overhead of these groups of files
as files being updated and deleted. Second, encoding and decoding require less memory
overhead (see Figure 8.1); for contiguous layout, the complete n blocks should be available
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in the machine’s main memory for encoding and decoding (e.g., 9 ˚ 256 MB should be
available in memory at the same time for encoding and decoding when the HDFS block
size is 256 MB), while these operations are performed on the cell level with a striped
layout, thus only 9 ˚ 1 MB (with 1 MB cell size) is required in the memory for encoding
and decoding [316]. And finally, the striped layout allows parallel I/O, while reading
data under contiguous layout is performed sequentially. Nevertheless, currently, there is
a work in progress to design EC with contiguous block layout in HDFS1.

In the remaining of this thesis, when we mention HDFS with EC, we mean the im-
plementation of EC in version 3 of HDFS i.e., EC with striped block layout.

EC groups

Storing a block in HDFS under EC imposes higher metadata overhead at the NameNode
(NN) than under replication (i.e., more memory is needed to maintain the same number
of logical blocks). This is because a block is distributed to n`k nodes while it is replicated
on 3 nodes only under replication. Therefore, to reduce the metadata overhead every n
blocks – belonging to the same file – are grouped into an EC group. Accordingly, all the
blocks of the same EC group are placed on the same set of nodes.

Figure 8.2 depicts the representation of an EC group with RSp6, 3q scheme in HDFS.
To host an EC group, n` k datanodes are needed; n nodes to host the data chunks and
k nodes to host the parity chunks. Each (original) block is represented physically by
n data chunks and k parity chunks distributed on different datanodes. A data (parity)
block represents n data (parity) chunks that belong to different original blocks from the
same EC group that are hosted on the same machine. A stripe is the collection of n` k
cells that are encoded together.

Storage policies

Since EC has been introduced to HDFS, each file and directory is associated with a
storage policy. Apart from replication which has a special policy (i.e., “REPLICATION”),
an EC policy is defined by a scheme and the size of striping cell. The scheme consists
of the number of data and parity chunks alongside the codec algorithm (XOR and Reed-
Solomon are supported). The striping cell size determines the granularity of data access
and buffer size (1 MB by default). Increasing the cell size could limit the overlapping
between computation (i.e., encoding) and network transfer on the client side [216], while
smaller cell size results in inefficient access to the disk. The default policy under EC is
“RS-6-3-1024k”, which means that Reed-Solomon (RS) codes are used with 6 data chunks
and 3 parity chunks and the encoding/decoding operations are performed with a striping
cell of 1 MB.

1WIP https://issues.apache.org/jira/browse/HDFS-8030
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Figure 8.2: EC group representation in HDFS under RSpn, kq.

8.4 Data Processing under EC

8.4.1 Job execution under EC

The storage policy of data (i.e., replication or EC) impacts the jobs execution time when
reading the data by the map tasks and when writing the data by the reduce tasks.

Under replication. Hadoop schedulers are designed to maximize the locality of map
tasks [66, 128, 309]. Replication can improve the percentage of local tasks: if a
machine holding the data block is not available, the task can be scheduled on a
different machine holding another replica. Furthermore, replication increases the
locality of speculative and recovery tasks [305, 319].

Under EC with contiguous layout. Running map tasks under EC with the contigu-
ous layout is equivalent to having only one replica as the parity blocks cannot be
used to perform any processing. This might lead to lower data locality especially for
speculative and recovery tasks. Moreover, recovery requires rebuilding the complete
data block before performing the processing [173].

Under EC with striped layout. Data locality is not fully exposed under EC with the
striped layout as blocks are distributed on multiple nodes, therefore, apart from the
local data chunk if available, all the remaining data chunks are read from remote
nodes.
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8.4.2 State-of-the-art: Data processing under EC

Hadoop is (still) a prominent framework for running data-intensive applications in clouds [285].
Substantial research efforts have therefore been dedicated to improve the performance of
data processing in Hadoop through locality execution [128, 309] and skew handling [129,
164] or to improve the efficiency of data processing by mitigating stragglers [242, 220] and
handling failures [305, 70]. However, all these works rely on the expensive replication.

Few works have investigated and optimized data processing under EC to provide ef-
ficient data processing. Zhang et al. [315] try to investigate the impact of EC in Hadoop
clusters. They implement EC with a contiguous layout on top of HDFS on the critical
path (i.e., encoding is performed online). They show that the execution times of MapRe-
duce applications can be reduced when intermediate data and output data are encoded
compared to 3-ways replication. This is due to the reduction in the amount of data which
is written to disk and transferred through the network.

Non-systematic codes such as Carousel [171] and Galloper [172] codes have been intro-
duced to improve data locality under EC. Instead of distributing the original data chunks
and parity chunks on distinct nodes (nodes which host parity chunks cannot execute map
tasks locally), parity data are appended to original blocks and thus all the nodes host
both original data and parity data. However, this requires launching more map tasks to
process the same amount of data.

To improve the performance of MapReduce applications under failure, Runhui et
al. [173] propose degraded-first scheduling. They focus on task scheduling in case of
failures for map tasks that may require degraded reads for their input data (i.e., read is
degraded when the required block is not available and thus should be reconstructed on
the fly by retrieving other data and parity blocks). This blocks the execution of map
tasks and prolongs the execution time of MapReduce applications. To address this issue,
degraded tasks are scheduled earlier when network resources are not fully used.

Finally, EC-Shuffle [303] proposes to encode the intermediate data of MapReduce
like jobs (e.g., Spark). The goal is to provide faster recovery after failures especially for
multi-stage jobs, however, this comes at the cost of extra storage cost and network traffic.

8.5 Discussion: Enabling Efficient Data Processing un-
der EC

Big Data applications rely on analytics frameworks to process the constantly growing
amount of data. These data need to be stored in distributed storage systems to ensure
reliable and efficient data access. However, ensuring data availability by employing repli-
cation is becoming expensive. Therefore, sustaining large-scale data processing stresses
the need for cost-efficient data analytics. With the continuous reduction of its compu-
tation overhead when encoding and decoding data, EC manifests as an alternative to
replication that provides lower storage overhead with the same fault-tolerance guarantee.

Previous work that integrates EC into HDFS mainly used the contiguous layout as it
preserves data locality, however, EC has been implemented with a striped block layout in
last major release of HDFS (the primary storage system for data analytics). Towards un-
derstanding the complete picture of the performance of data-intensive applications under
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EC, in Chapter 9, we focus on HDFS and evaluate its performance under EC. Chapter 10
completes the preceding chapter by focusing on the performance of MapReduce jobs.
While Chapter 11 presents an EC-aware placement algorithm in HDFS that can improve
the performance of data-intensive applications under EC.
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CHAPTER 9. UNDERSTANDING THE PERFORMANCE OF ERASURE CODING
IN DISTRIBUTED STORAGE SYSTEMS

Erasure coding (EC) is an ideal candidate technique to enable high data availability
with low storage cost in data-intensive clusters. However, using EC may raise several
challenges, mainly related to the performance and network overhead. In an attempt to
understand how practical is EC when employed in distributed storage systems that are
used to serve data-intensive applications (e.g., read and write applications, MapReduce
applications, etc.), in this chapter, we study the performance of accessing data in a repre-
sentative distributed storage system (i.e., HDFS). Through extensive micro-benchmarks
on top of Grid’5000 [105] testbed, we evaluate the performance of (concurrent) data ac-
cesses under erasure coding and replication in a complementary and contrast approach.

The remainder of this chapter is organized as follows. Section 9.1 presents the motiva-
tion of this study. The experimental methodology is explained in Section 9.2. Section 9.3
presents the experiments under write operation while Section 9.4 presents the different
sets of experiments under read operation. Finally, Section 9.5 concludes this chapter.

9.1 Motivation

As a first step towards understanding the performance of EC for data-intensive applica-
tions, we investigate the performance of data access in HDFS under EC. HDFS acts as
backend storage for analytics frameworks in data-intensive clusters. In this environment,
critical operations that influence the performance of the storage systems are adding and
reading data.

Write under EC

Why studying the write performance under EC? Data is generated at an extreme
rate. To benefit from this data, it is usually stored – and then analyzed – in data-intensive
clusters. Recent studies revealed that hundreds of terabytes of data are ingested every
day in data-intensive clusters [53]. Those data, known as data inputs, vary significantly in
their sizes. For example, traces from production Hadoop cluster [55] reveal that the size
of input data varies from 3 GB to 13 TB. Furthermore, these input data are populated
frequently by multiple concurrent users and applications. For example, one computation
requires 150 pipelined jobs to complete [70]; hence, the output of a job is used as an
input for the later one. This motivates us to study the cost of adding data under erasure
coding compared to replication. We further study the impact of concurrency on the
performances of both erasure coding and replication.
What is the impact of EC on write performance? Writes are pipelined under
replication (i.e., the client sends the data block to the first node which, in turn, pipelines
it to the second and then the third). However, under EC, the client encodes the data
and then writes the data and parity chunks directly to all the nodes in parallel. This
parallelism can provide higher throughput but results in more data sent by the client
stressing the link between the clients and the HDFS cluster.

Read under EC

Why studying the read performance under EC? Reading input data is the first
step for any data-intensive application. Many studies have discussed the importance of
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optimizing the read step (i.e., reading input data) to improve the job execution time –
mainly through targeting high data locality [51, 309, 128]. Therefore, it is important
to understand read performance under EC. Typically, multiple jobs are running concur-
rently (to achieve higher cluster utilization) therefore we need to evaluate concurrent file
read. Also, it is possible that multiple jobs (could belong to different users) use the same
files as input, thus we study concurrent reads of the same file under both storage policies.
What is the impact of EC on read performance? Clients reading data under repli-
cation can contact any replica and retrieve all the data from only one replica, this can
provide load balance between the nodes hosting the replicas under concurrent read. On
the other hand, to read a block under EC, the client needs to contact the data nodes
and read the data block in parallel. This might result in higher read throughput if the
network bandwidth is higher than disk read bandwidth, but may cause an imbalance in
the load as nodes hosting parity chunks may serve fewer requests.

To better understand the performance of write and read operations under EC, we
experimentally study their behaviors in detail as described in the following sections.

9.2 Methodology Overview

We conducted a set of experiments to assess the impact of data access pattern and
concurrent data access when HDFS operates under replication (REP) and erasure coding
(EC).

9.2.1 Platform

We have performed our experiments on top of HDFS. However, it is important to mention
that our findings are not tight to HDFS and could be valid in other distributed file systems
that implement a striped layout erasure coding policy.

9.2.2 Testbed

Our experiments were conducted on the French scientific testbed Grid’5000 [105] at the
site of Nantes. Two clusters – Econome and Ecotype – are used for the experiments with
21 and 40 machines, respectively. Each machine of Econome cluster is equipped with
two Intel Xeon E5-2660 8-core processors, 64 GB of main memory, and one disk drive
(HDD) at 7.2k RPM with 1 TB. While Ecotype cluster’s machines have the same CPU
and memory but each machine is equipped with an SSD of 350 GB. The machines of
each cluster are connected by 10 Gbps Ethernet network. The two TORs switches of
both clusters are connected with four 40 Gbps links. The machines run 64-bit Debian
stretch Linux with Java 8 and Hadoop 3.0.0 installed. All the experiments have been
done in isolation on the testbed, with no interference originated from other users.

Econome runs HDFS (one node hosts the NameNode (NN) and the remaining 20
nodes act as DataNodes (DNs)) while Ecotype hosts the clients. To exclude the impact
of the local disks at the client side, we store the dataset in the main memory.
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9.2.3 HDFS configuration

HDFS block size is set to 256 MB (similar to [218, 70, 305]) and the replication factor is
set to 3 (default value). For EC, if not otherwise stated, we use the default EC policy in
HDFS, i.e., RSp6, 3q scheme with a cell size of 1 MB.

9.2.4 Benchmarks

We used the read and write operations to measure the performance of HDFS. These
operations are issued from the clients using the HDFS commands hadoop fs -get and
hadoop fs -put respectively. The test files are generated by the dd command from
/dev/urandom as an input source.

9.2.5 Metrics

The throughput at the client side is the main metric used to measure the performance of
read/write operations from/to HDFS. For one client, it is the amount of data read/written
per second. In the case of concurrent read and write (by multiple clients), the average
throughput per client is shown alongside the standard deviation of the clients’ throughput.
We use the coefficient of variation metric (i.e., the standard deviation divided by the
mean) to measure the variation in the data and load (i.e., read and write) in-between
DNs.

We also profile CPU utilization, memory utilization, disk and network I/O of the
nodes using the python library psutil [225] version 5.4.8.

9.3 Cost of Adding New Data

9.3.1 Write dataflow in HDFS

Regardless of the HDFS storage policy, the client splits the file into blocks equal to the
HDFS configured block size. Under replication, and for each block, the client contacts
the NN to obtain a list of DNs equal to the replication factor (e.g., 3 nodes for 3-way
replication) to write the block to. The client streams each block to the first DN in the
corresponding list which in turn pipelines the data to the second one and so on. On the
other hand, the write dataflow under EC is a bit different; for RSp6, 3q, after splitting the
file into blocks, every 6 blocks are grouped into an EC group. As described in Section 8.3,
the reason behind grouping blocks into EC groups is to reduce the metadata overhead
at the NN. As a result, all the blocks of the same EC group are placed on the same
set of nodes. For each EC group, the client contacts the NN to obtain a list of 9 DNs.
To encode this group of blocks, the blocks are encoded sequentially; each block is split
into cells (e.g., 1 MB), then the client encodes every 6 cells to generate 3 parity cells.
The client sends these 9 cells to the 9 DNs, and then continues to do the same with
the remaining cells, and repeats the same process for the remaining blocks in the group.
Then, do the same for the remaining EC groups. In conclusion, three (number of replicas)
DNs are contributing to a write operation at a time under REP, while 9 DNs (n ` k)
are simultaneously writing data under EC. It is important to mention that blocks are
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Figure 9.1: Writing under REP and EC.

written sequentially to HDFS (the second block is sent once the first block is completely
stored in a DN, persisted in disk or buffered in the memory). Moreover, when the data
is stored completely in all DNs (at least buffered in the memory), the write operation is
considered successful.

9.3.2 Results of single write

Figure 9.1a shows the write throughput of one client with different file sizes. The write
throughput is 1.11x to 1.3x higher under REP compared to EC when increasing the file
sizes from 256 MB to 20 GB, respectively.

When writing 20 GB file, REP achieves 363 MB/s write throughput, while EC obtains
a throughput of 277 MB/s which is 76% of the throughput under REP. This can be
explained due to the larger amount of data which is sent from the client to HDFS under
EC (i.e., 30 GB accounts for the original and parity data) compared to REP (i.e., 20 GB)
and the “low cost” data pipelining under REP. First, data stays in the buffers of the DNs
when received from the client or pipelined from other DNs, hence, it is not synchronized
to disks directly. As a result, data transfer time – to HDFS – strongly depends on the
amount of data sent to the cluster. Given that the throughputs of inter-cluster traffic
(network traffic between the clients and the HDFS cluster) are 444 MB/s and 399 MB/s
under EC and REP, respectively, the file under EC takes 35% more time to be transferred

97



CHAPTER 9. UNDERSTANDING THE PERFORMANCE OF ERASURE CODING
IN DISTRIBUTED STORAGE SYSTEMS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0.0
0.5
1.0
1.5
2.0
2.5

di
sk
 w
rit
e 
(G
B/
s) EC

REP

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Timestep

0
2
4
6
8

10
12

Ne
tw
or
k 
tra

ffi
c 
(G
B/
s)

EC inter
REP inter
REP intra

Figure 9.2: Disk, inter-network and intra-network throughput for concurrent writing of
5 GB files by 40 clients.

to HDFS compared to REP (the difference in transfer times between EC and REP is
clearer when increasing the file size). Second, (buffered) data can be pipelined as soon
as they reach the first DN because the intra-cluster (data transferred inside the HDFS
cluster) throughput is almost two times the inter-cluster throughput (i.e., 801 MB/s),
thus replicating (transferring) data inside the cluster does not introduce an extra cost.
Finally, more data is persisted to disk under REP compared to EC (i.e., 21 GB under
EC while it is 29 GB under REP); which in turn slightly slow the write operation under
REP.

Note that, by default, Hadoop client utilizes only one thread to send the data and
therefore the inter-cluster throughput may not be fully utilized. In case of REP, data is
communicated between two nodes only and thus the inter-cluster throughput is limited
to 399 MB/s. In case of EC, despite that the client is sending data to 9 DNs, inter-cluster
throughput is limited to 444 MB/s because only one core is responsible for encoding and
sending data (in case of 20 GB, we observe that one core is always at 100% utilization).

Observation 1. Unlike replication, more data (i.e., parity data) goes from the client
to HDFS cluster under EC. This extra parity data (0.5x of the original data in our
configuration) results in a loss of throughput compared to replication as data are pipelined
(replicated) inside the cluster with minimal cost.

9.3.3 Results of concurrent writes

When increasing the number of concurrent clients to 5, EC starts to approach the through-
put of REP (Figure 9.1b). Interestingly, with 40 clients, EC has a throughput 2 times
that of REP for files equal and bigger than 5 GB as depicted in Figure 9.1c.

In case of writing 5 GB files by 40 concurrent clients, REP achieves 32 MB/s write
throughput, while EC obtains a throughput of 83 MB/s which is 2.59x higher than the
throughput under REP. Disks are saturated under both EC and REP (the average disk
throughput is 110 MB/s and 124 MB/s, respectively). As more data is persisted to
disks under REP compared to EC (i.e., 464.4 GB under REP while it is 160.5 GB under
EC), writing data to disks under EC is almost 2.5 times faster. On the other hand, the
throughput of the intra-cluster network is low (i.e., 183 MB/s to 233 MB/s when the
files are bigger or equal to 5 GB), thus, the write performance further degrades under
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REP. The low disk and intra-cluster performances limit the arrival rate of data to HDFS
cluster under REP (the arrival rate is 1162 MB/s under REP compared to 4535 MB/s
under EC). As shown in Figure 9.2, the network performance (inter and intra) drops once
the buffers are filled and data starts to be synchronized to disks while still not completely
replicated (transferred) to other DNs.

To further explain the impact of concurrency on the performance of write under both
EC and REP, Figure 9.1d shows the aggregated write throughput when writing a data
set of 100 GB while varying the number of clients and therefore the files sizes. When the
number of concurrent clients is 5, REP achieves a throughput of 1410 MB/s while it is
1340 MB/s under EC. The aggregated throughputs increase by 1.94x and 3.25x when in-
creasing the number of clients to 10 and 20 clients under EC, respectively. This increase is
mainly due to the increase in the inter-cluster throughputs; On the other hand, the aggre-
gated throughputs increase 1.2x and 1.5x under replication when increasing the number
of clients to 10 and 20 clients, respectively. Here, the high cost of data pipelining limits
the scalability of HDFS under REP when increasing the number of clients. Specifically,
buffers under replication are filled faster (original data and replicated data) compared to
EC. Thus, the arrival rate of data to a DN is limited by the disk throughput (125 MB/s
under EC and 128 MB/s under REP). However, a DN under replication is receiving data
from the clients and from other DNs, this reduces the inter-cluster throughput and pro-
long the writing time under REP compared to EC.

Observation 2. Under concurrent writes, in contrast to under EC, the performance of
write workloads under replication is limited by the intra-cluster transfer and disk con-
tention (as the total amount of written data is larger under REP compared to EC). Hence,
due to the high network and memory cost of data pipelining, EC can even outperform
replication – under heavy concurrent writes. This gap is more obvious for large files (e.g.,
in our experiments, the throughput under EC is at least 2x the throughput achieved
under replication when 20 clients are writing 10 GB file each (Figure 9.1c).

9.3.4 Impact of EC policies
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(a) Distinct RS schemes with 1 MB cell size

Figure 9.3: The impact of EC policies on single client write.
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The number of data and parity chunks determines the fault tolerance degree and the
storage overhead of the erasure codes. However, here we compare the following three
schemes solely from a performance point of view: RSp6, 3q, RSp10, 4q and RSp3, 2q.

Figure 9.3a shows the write throughput of one client with different EC schemes. For
10 GB file, RSp10, 4q achieves a write throughput of 295 MB/s while RSp6, 3q achieves
270 MB/s followed by RSp3, 2q with 250 MB/s. The throughput per scheme is strongly
related to the total amount of data written; For RSp10, 4q, the parity data accounts
for 40% of the original data size, while it accounts for 50% and 67% for RSp6, 3q and
RSp3, 2q, respectively. Even though the inter-cluster throughput is higher for RSp3, 2q
and RSp6, 3q, but the fact that sending fewer data compensates for the difference. For
example, the throughputs of inter-cluster traffic are 435 MB/s, 444 MB/s, and 471 MB/s
for RSp10, 4q, RSp6, 3q, and RSp3, 2q, respectively. The reason behind higher inter-cluster
throughput is because fewer nodes are involved, therefore, less probability to wait for the
slowest response. The disk throughputs are 481.5 MB/s, 321.4 MB/s, and 389.8 MB/s
for RSp10, 4q, RSp6, 3q, and RSp3, 2q, respectively.

Observation 3. The performance of write operation by a single client depends on the
total amount of data transferred to the HDFS cluster, therefore, EC schemes with less
parity overhead have higher throughput.

9.3.5 Implications

Replication is not only costly in terms of storage requirements but also contributes to the
problems of oversubscribed networks [70] and poor disk performance [70] in production
clusters (e.g., traces from production clusters at Facebook and Microsoft pointed out
that replication results in almost half of all cross-rack traffic [53]). Applying EC as an
alternative to replication does not only reduce storage cost and disk overhead but also
results in lower network traffic (up to 50%). In conclusion, given its performance, EC is
feasible for write applications, more importantly, EC sustains high throughput for write
operations under high concurrency.

9.4 Reading Data under EC

9.4.1 Read dataflow in HDFS

To read a file in HDFS, the client contacts the NN to obtain the addresses of the DNs
hosting each block of the file. For each block, the DNs are ordered by the network distance
to the client and are randomized for the nodes that have the same distance. The client
then reads the blocks in order i.e., sequentially, one by one. Reading one block of data
(without any failure) has the same cost under both EC and REP, as the same amount
of data (equal to the block size) is read from disk and transferred over the network.
However, under EC the data block can be read in parallel from multiple DNs (6 DNs in
our configuration). This parallelization can achieve better performance especially when
the network bandwidth is higher than the disk bandwidth [16].

100



9.4. READING DATA UNDER EC

256 MB 1 GB 5 GB 10 GB 20 GB
File size

0

100

200

300

400

500

600

T
h
ro

u
g
h
p
u
t 

(M
B

/s
)

(a) Read one file per client
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(b) Read 5 distinct files by 5 clients
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(c) Read 40 distinct files by 40 clients
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Figure 9.4: Reading distinct files under REP and EC.

9.4.2 Results of single read

The read throughput for different file sizes by one client is depicted in Figure 9.4a. As we
expect, EC performs better than REP. Specifically, the read throughput is 1.4x to 4.95x
higher under EC compared to REP when increasing the file size from 256 MB to 20 GB,
respectively.

When reading 20 GB file, REP achieves 116 MB/s read throughput, while EC obtains
a throughput of 575 MB/s which is 4.95x higher than the throughput under REP. The
reason behind this is that an EC block is read from 6 nodes, while under REP, a block is
read from a single node. Therefore – as the performance of the read operation is limited
by the disk – 6 disks are leveraged in parallel under EC, while a single disk is used
under REP. Hence, the throughput of the read workload is strongly co-related with the
performance of the disks. Therefore, the performance gap between EC and REP is clearer
when increasing the file sizes, especially when the disk throughput under EC increases.

Under replication, a block is read sequentially from the disk, hence, the disk is ex-
ploited efficiently (i.e., the throughput of the disk is between 85 MB/s and 100 MB/s
most of the time). On the other hand, under EC, a block is read in parallel from multiple
nodes (6 nodes in our configuration), therefore, each node reads a fraction of the block
(one data chunk of 43 MB) and thus cannot leverage the full throughput of the disk.
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Table 9.1: Disk read throughput (MB/s) of active DNs in case of single client read.

File size mean 25% 50% 75% max

EC

256 MB 35.42 26.62 42.00 42.75 43.00
1 GB 71.28 57.00 71.25 85.50 86.00
5 GB 74.59 65.51 85.33 85.51 85.67
10 GB 83.76 85.35 85.45 85.61 102.80
20 GB 83.39 77.44 85.39 86.85 102.80

REP

256 MB 85.33 85.33 85.33 85.33 85.33
1 GB 85.42 85.33 85.33 85.42 85.67
5 GB 85.19 85.46 85.67 85.67 102.40
10 GB 88.44 85.33 85.55 89.40 102.80
20 GB 86.63 83.19 85.50 92.86 102.60

As we can see in Table 9.1, when the size of the file is 256 MB, the disk throughput is
limited by the physical block size (43 MB/s) under EC. However, when the client reads
all the blocks of an EC group (6 blocks in our configuration), the disk throughout of an
individual node is fully utilized as 6 chunks – belonging to different blocks – are read
sequentially from the disk. For instance, when the file size is 20 GB, the average disk
throughputs (of active disks) for both EC and replication are 83.4 MB/s and 86.6 MB/s
(the disk throughput is higher than 80 MB/s most of the time), respectively. Hence, this
explains the 4.95x performance difference.

Observation 4. Compared to 3-way replication, a block (256 MB) is scattered on more
DNs under EC. Therefore, reading a file under EC has a clear advantage compared to
under REP, as multiple disks are leveraged in parallel.

9.4.3 Results of concurrent reads

Reading distinct files

When increasing the number of concurrent clients to 5 – each reading a distinct file, the
gap between EC and REP starts to decline as shown in Figure 9.4b. Interestingly, with
40 concurrent clients, REP achieves slightly higher throughput (clearer when the file size
is 1 GB) as shown in Figure 9.4c. Moreover, we notice that the performance of read
operations exhibits noticeable variation in-between different clients under both REP and
EC.

When 5 clients are reading 5 files, each has a size of 20 GB, REP achieves 97 MB/s
read throughput, while EC obtains a throughput of 202 MB/s which is 2.08x higher than
that under REP. The average disk throughput of active DNs is 60 MB/s and 86 MB/s
under EC and REP, respectively. The average disk throughput under EC decreases –
compared to the one in case of 1 client (i.e., 83.4 MB/s) – which is due to data skew. As
shown in Figure 9.5, although most of the DNs are serving data, some of them (around
6 DNs) serve more clients a time which in turn results in exploiting the full capacity
of the disk (i.e., 125 MB/s) on those nodes. On the other hand, the majority of nodes
were serving 1 client most of the time, thus low utilization of the disk. We observe that
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Figure 9.5: Disk throughput of the DNs during the concurrent read of 5 files by 5 clients
each of 5 GB under EC.

disk throughputs are above 100 MB/s during 50% and 18% of the read workload time
under REP and EC, respectively. Hence, this, in addition to the increase in the number
of contributing nodes (active disks), explains the decrease in the performance difference
from 4.95x to 2.08x between EC and REP.

When 40 clients are reading 40 files, each has a size of 20 GB, we observe that HDFS
suffers from obvious load imbalance under both REP and EC. Under REP, at least one
disk was not active during 25% of the read workload (see Figure 9.4d). Under EC, some
DNs still serve more clients compared to other DNs which in turn results in high con-
tention on the disks and thus low disk throughputs; disk throughputs are above 100 MB/s
during 40% and 2% under REP and EC, respectively. As a result, the aggregated disk
throughout under EC is 1352 MB/s and REP is 1350 MB/s, which explains the 2% differ-
ence. In addition, this load imbalance results in high variation in the latency of the read
workload in-between clients, therefore, clients which are served by nodes under heavy
load need more time to read their files.

Reading the same file

Figure 9.6a shows the average read throughput per client when 5 clients are reading the
same file concurrently. With 20 GB file, the average read throughput is 506 MB/s under
EC while it is 122 MB/s under REP, thus 4.14x faster under EC. To explain the difference,
we inspect the amount of read data and sent data at the cluster level. Under EC, the
cluster has an aggregated disk throughput of 537.6 MB/s and network throughput of
2840 MB/s: each block under EC is read once from the same nodes, cached and then
sent to the 5 clients; hence, network throughput is 5.2x higher than the disk throughput.
However, under REP, the cluster disk throughput is 322.5 MB/s and the network has
a throughput of 652.8 MB/s, 1.7x higher than the disk. Here, a block is served by the
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(a) Read by 5 clients
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(b) Read by 40 clients
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Figure 9.6: Reading the same file under REP and EC.

3 DNs at the same time: as a block is available on 3 DNs, the DNs receive requests –
from different clients – to read the block, accordingly, the 3 DNs read the data from the
disk, cache it and then sent it to 5 clients (one DN serves 1 or 2 clients). This explains
why the total amount of read bytes is 52.1 GB (2.6x the size of the file) under REP and
20 GB under EC.

When increasing the number of concurrent clients to 40, we notice that the clients
maintain their average throughput under REP (119.2 MB/s) while it drops to 195.3 MB/s
under EC, as shown in Figure 9.6b. Under REP, each block is served by 3 different DNs,
so a block will be served by a new set of DNs (3 DNs) while the previous block is still
being served to clients (new block is requested once a client out of the 40 clients finishes
fetching the current block). Consequently, disk throughput increases under REP from
322 MB/s with 5 clients to 367.6 MB/s and thus the network throughput increases to
5079 MB/s. On the other hand, 6 DNs are continuously serving the 40 clients: each
DN is responsible for one data chunk. This saturates the network bandwidth of the
DNs and cause variations in-between clients. Moreover, as the reading of a new block
can start when all the chunks are received by at least one client, the same 6 DNs will be
serving two blocks (belong to the same EC group) simultaneously and this will reduce the
number of disk read requests for the new block and at the same time reduce the amount
of data sent to clients through network and further increase the variation. Even worse,
the performance degradation at the disk-level and the network-level (and the resulted
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Table 9.2: Average aggregated cluster network and disk throughput (MB/s) in case of
concurrent read of the same 20 GB file by the number of clients.

Number
of clients

Network throughput (MB/s) Disk throughput (MB/s)
EC REP EC REP

5 2840.3 652.8 537.6 322.5
10 5836.8 1331.5 552.8 374.2
20 7009.7 2648.2 384.1 376.1
40 8048.7 5079.1 229.2 367.6

variation in the throughput in-between clients) is amplified when DNs are serving two
successive EC groups. We observe that the number of disk requests drops by almost 50%
(from 50 to 24) when increasing the number of clients from 5 to 40 clients. Consequently,
the disk throughput drops from 537.6 MB/s to 229.2 MB/s – the disk throughputs of
active DNs are less than 50 MB/s for almost 80% of the read workload time. This,
in addition to the contention at the network due to the high concurrency, results in
a network throughput of only 8048 MB/s and a variation of 5.7% in the throughput
in-between clients.

Figure 9.6c depicts the read throughput of the same file by increasing the number
of clients. REP maintains the same throughput per client, however, we can clearly see
how the throughput under EC drops with increasing the number of concurrent clients.
Table 9.2 shows the cluster-level network and disk throughput. REP maintains a stable
disk throughput with increasing the number of clients and relative increase of network
throughput with the number of clients. However, under EC, the disk throughput drops
while the network throughput increases sub-linearly.

Observation 5. The goal of presenting data as EC groups is to reduce metadata over-
head in the NN, but it results in a high imbalance in data distribution across DNs
compared to replication. This, in turn, causes stragglers when high concurrent reads are
performed to either distinct files or the same file, and therefore, it reduces the advance of
parallel chunks reads. Specifically, DNs which are serving data continuously to multiple
clients exhibit low disk throughput due to high contention on disk (distinct files) or high
contention at the network (same file).

9.4.4 Impact of EC policies

Figure 9.7a shows the read throughput of one client with different EC schemes. With
20 GB file, RSp6, 3q achieves the highest throughput of 568 MB/s, followed by RSp10, 4q
with 561.7 MB/s while RSp3, 2q achieves 324.8 MB/s. The average (max) disk through-
puts are 53.8 (60.2) MB/s, 81.4 (102.6) MB/s, and 83.6 (102.9) MB/s for RSp3, 2q,
RSp6, 3q, and RSp10, 4q, respectively. RSp3, 2q leverage just 3 disks in parallel compared
to 6 and 10, and thus, its limited throughput compared to RSp6, 3q and RSp10, 4q. How-
ever, even though RSp10, 4q read from 10 disks in parallel while RSp6, 3q read from 6
disks, RSp6, 3q has slightly higher throughput. The reason is that more parallelism im-
poses higher overhead and introduces a higher probability of waiting for the slowest node
to read and send its data. The same behavior is observed in caching systems [308].
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Figure 9.7: The impact of EC policies on single client read.

Observation 6. In contrast to write, the amount of read data is the same with all the
schemes. However, the degree of parallelism (which is related to the number of data blocks
n) becomes the deciding factor; smaller n means less parallelism, hence less throughput,
while large n might result in considerable overhead [308].

9.4.5 Implications

The advantage of striped block layout under EC is to enable parallel data read. How-
ever, the use of EC groups (to reduce metadata overhead) reduces this advantage under
concurrent clients read. EC groups introduce imbalance in the data access across DNs
which, in turn, causes stragglers. Therefore, mitigating stragglers under concurrent ac-
cess is essential. While late binding can be employed (as in EC-Cache [230]), it comes
with the cost of extra network transfer. Furthermore, intelligent data access is used in
EC-Store [3] but this method requires historical analysis of data access. On the other
hand, reads under EC benefit more from OS caches than replication as data chunks are
always read from the same node, which might be beneficial for iterative applications. In
conclusion, the previous experiments demonstrate the feasibility and the advantages of
using EC for read operation in large-scale clusters.

9.5 Conclusion

Efficient data access in large-scale storage systems is an important problem with the cur-
rent rate of data generation. In this chapter, we experimentally evaluate the performance
of data read and write operations in HDFS under both replication and erasure coding.
Our findings can be summarized as follows:

• Write operations under replication have higher throughput than under EC for single
client. However, when increasing the number of concurrent clients, the throughput
under EC approaches that under replication and even outperforms it under high
concurrency. In addition, applying EC as an alternative to replication does not
only reduce storage cost and disk overhead but also results in lower network traffic.
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• When reading data, EC can leverage parallel reads from multiple disks and deliver
a 4.95x higher throughput than replication for a single client. However, under high
concurrency, the performance of EC is impacted by the imbalanced load across
nodes, which is caused by the distribution of chunks and the design of EC group.

Briefly, our findings demonstrate that erasure coding is not only feasible but also
outperforms replication in many scenarios. In the next chapter, we further study the
impact of EC on read and write within the context of MapReduce applications where the
clients (i.e., the tasks) reside inside the cluster and are processing the data.
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CHAPTER 10. CHARACTERIZING THE PERFORMANCE OF DATA
ANALYTICS UNDER ERASURE CODING

Data processing applications have become first-class citizens in many industrial and
scientific clusters [76, 50], in this chapter, we aim to answer a broad question: How erasure
coding performs compared to replication for data processing applications in data-intensive
clusters?

The pervious chapter suggested that read and write operations exhibit promising
performances under erasure coding (EC) in data-intensive clusters. However, the perfor-
mance of data processing under EC is still not clear as there is a clear tradeoff between
parallel reads of input data and not being able to fully preserve data locality. According,
we provide – to the best of our knowledge – the first study on the impact of EC on
the task runtimes and application performances. We conduct experiments to thoroughly
understand the performance of data-intensive applications under replication and EC. We
use representative benchmarks on the Grid’5000 [105] testbed to evaluate how analytics
workloads, data persistency, failures, backend storage devices, and network configurations
impact their performances.

The remainder of this chapter is organized as follows. Section 10.1 presents the moti-
vation behind using erasure coding for data processing. The experimental methodology
is explained in Section 10.2. Section 10.3 and Section 10.4 present the different sets of
experiments highlighting the impact of erasure coding on the performance of MapReduce
applications and summarize our observations. Section 10.5 discusses guidelines and new
ways to improve data analytics under EC. Finally, Section 10.6 concludes this chapter.

10.1 Motivation

Moving from the traditional replication to EC presents unique opportunities for data
processing in terms of storage cost and disk accesses (i.e., less amount is written to disk).
The benefits are more obvious when adopting high-speed “expensive” storage devices such
as SSDs and DRAMs. More importantly, important progress has been made to mitigate
and reduce the impact of the inherited limitations of EC such as encoding overhead and
extra network traffic when reading the data inputs. We list them in detail below:

• CPU overhead of EC: EC used to have high CPU overhead when encoding and
decoding data. Fortunately, thanks to Intel Intelligent Storage Acceleration Library
(ISA-L) [131], EC operations are implemented and run at CPU speed (e.g., encoding
throughput using only one single core is 5.3 GB/s for Intel Xeon Processor E5-2650
v4 [133]). Moreover, in disk-based storage systems, reading/writing the data is the
dominant factor, not the encoding/decoding operations which become negligible
compared to disk throughput [151, 3]. Therefore, performing EC operations on the
critical path (online) has minimal impacts.

• Network overhead of EC: Accessing data under EC requires remote data access
and generates network traffic. Therefore, achieving data locality under EC is not
possible (apart from the fraction of the block that is read locally). On the other
hand, the current advance in data center networks makes the gap between net-
work bandwidth and storage I/O bandwidth rapidly narrowing [92], and therefore,
the performance bottleneck is shifting from network to storage I/O [231]. More-
over, previous work has shown that disk-locality becomes irrelevant [16, 143]. This
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is acknowledged in practice as all PaaS offer of MapReduce (e.g., AWS Elastic
MapReduce [25], Azure HDInsight [112], etc.) are implemented as disaggregated
computation and storage design.

To demonstrate how (im)practical is EC for data processing, we conduct an extensive
experimental study to understand the performance of data-intensive applications under
replication and EC. In detail, we aim at answering three main questions:

1. How different analytical workloads perform under EC? The wide adoption
of clouds and MapReduce introduces many types of data-intensive applications
ranging from simple sort applications to the emerging machine learning applica-
tions [187]. In this study, we conduct experiments with three representative data-
intensive applications: Sort, Wordcount and Kmeans applications. Moreover, we
study different execution patterns by enabling and disabling the overlap between
map execution and data shuffle.

2. What is the impact of hardware on the performance of data processing
under EC? We conduct experiments with different hardware configurations: we
used HDDs and DRAMs as backend storage devices for HDFS and vary the network
bandwidth from 1 Gbps to 10 Gbps. In addition, we conduct experiments to imitate
the limited memory capacity by persisting all the output data to disk.

3. How EC recovery impact the performance of data processing under fail-
ures? Failures are common in data-intensive clusters [98, 88, 106, 136, 96]. Pre-
vious works show that number of failures and their occurrence times impact the
performance of data-intensive applications significantly [305, 70]. Thus, we con-
duct experiments while varying the number of failures and the injecting time.

10.2 Methodology Overview

We conducted a set of experiments to assess the impact of analytics workloads, data
persistency, failures, the backend storage devices, and the network configuration on the
performance of data-intensive applications when HDFS operates under replication (REP)
and erasure coding (EC).

10.2.1 Platform

We have performed our experiments on top of Hadoop 3.0.0. We evaluate MapReduce
applications in two scenarios: when overlapping map phase and shuffle stage in reduce
phase – as in Hadoop and Flink – and when there is no overlapping between the two
phases – as in Spark [310, 259]. It is important to note that the work (and the findings)
we present here neither is limited to HDFS implementation nor specific to Hadoop and
can be applied to other distributed file systems that implement a striped layout erasure
coding policy. Moreover, our findings can be valid with other data analytics frameworks
if they run on top of HDFS as the impact of EC in limited to reading the input data
and writing the output data; not on how the actual computation and task scheduling are
performed.
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10.2.2 Testbed

Our experiments were conducted on the French scientific testbed Grid’5000 [105] at the
site of Nantes. We used for our experiments the Econome cluster, which comprises
21 machines. Each machine is equipped with two Intel Xeon E5-2660 8-core processors,
64 GB of main memory, and one disk drive (HDD) at 7.2k RPM with 1 TB. The machines
are connected by 10 Gbps Ethernet network, and run 64-bit Debian stretch Linux with
Java 8 and Hadoop 3.0.0 installed. All the experiments have been conducted in isolation
on the testbed, with no interference originated from other users.

In all the experiments, one node is dedicated to run the NameNode (NN) and the
ResourceManager (RM), while the remaining 20 nodes serve as workers (i.e., DataNodes
(DNs) and NodeManagers (NMs)). Network bandwidth of 1 Gbps links is emulated with
the Linux Traffic-Control tool [179].

10.2.3 Hadoop configuration

HDFS block size is set to 256 MB and the replication factor is set to 3. For EC, if not
otherwise stated, we use the default EC policy in HDFS, i.e., RSp6, 3q scheme with a cell
size of 1 MB. We disable speculative execution to have more control over the number
of launched tasks. We configure YARN (the resource manager) to run 8 containers per
node (i.e., one per CPU core). Therefore, 160 slots are available in our cluster, which is
sufficient to process 40 GB of data in a single map wave.

10.2.4 Benchmarks

We evaluate the performance of MapReduce with two micro-benchmarks (i.e., Sort and
Wordcount applications) and one iterative application (i.e., Kmeans). Sort application
is considered shuffle intensive and generates an output equal in size to the input, which
represents a considerable portion of scientific and production applications (e.g., traces
collected at Cloudera show that, on average, 34% of jobs across five customers had output
at least as large as their inputs [50]). Wordcount application is considered map intensive
with small output size, which accounts for the majority of jobs in production data-
intensive clusters (e.g., about 70% of the jobs in Facebook clusters [50]). Both Sort and
Wordcount applications are available with Hadoop distribution.

In addition to the micro-benchmarks, we evaluated Kmeans application from the
HiBench suite [124]. Kmeans is a basic Machine Learning application that is used to
cluster multi-dimensional datasets. We used the provided synthetic dataset generator of
HiBench to generate a dataset with 1200M samples of 20 dimensions each, which results
in a total size of 222 GB. We set the number of clusters to 5 and set the maximum number
of iterations to 10.

Each job is running alone, thus, it has all the resources of the cluster during the
execution. We run each experiment 5 times and we report the average alongside the
standard deviation. Moreover, when analyzing a single run, we present the results of the
job with the median execution time. We cleared the caches between data generation and
data processing, as well as between the runs.
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Figure 10.1: Job execution time of Sort and Wordcount applications under EC and REP
(non-overlapping shuffle).

10.2.5 Metrics

We used the execution time and the amount of exchanged data for MapReduce applica-
tions; Job execution time is the total time of the job from its start time to finish time
(not including time waiting in the queue). Exchanged data is the amount of data that
goes over the network between the DNs. It consists of non-local read for input data, the
shuffled data, and the non-local write of output data. It is measured as the difference
between the bytes that go through each machine network interface, for all the DNs, before
and after each run. Also, we used the coefficient of variation metric (i.e., the standard
deviation divided by the mean) to measure the variation in tasks’ (map and reduce)
runtimes.

During all the experiments, we collect the metrics related to CPU utilization, memory
utilization, disk, and network I/O of the DataNodes using the python library psutil [225]
version 5.4.8.

10.3 Data Processing under EC

A MapReduce job consists of two phases: (1) map phase: map tasks read the input
data from HDFS and then write the intermediate data (i.e., the output of the map
phase/input for the reduce phase) in the local disks after applying the map function. (2)
reduce phase which in turn includes three stages: shuffle stage which can be performed
in parallel with map phase, sort stage and finally reduce stage. Sort and reduce stages
can only be performed after the map phase is completed. In the reduce stage, data are
written to HDFS after applying the reduce function. However, we note here that writing
data to HDFS is considered successful when the data is completely buffered in memory.
Consequently, a job can be considered as finished before all the output data are persisted
to disks. When running MapReduce applications, HDFS is accessed during the map
phase and the reduce stage, whereas, intermediate data is written to the local file system
of the DNs.
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Table 10.1: Detailed execution times of Sort and Wordcount applications for 40 GB input
size in second with the percentage of each phase.

Job execution time Map Phase Reduce Phase

Sort EC 113.6 70.6 (64.2%) 38.3 (35.8%)
REP 103.9 43.4 (43.9%) 54.3 (56.1%)

Wordcount EC 113.7 101.0 (90.8%) 8.2 (09.2%)
REP 73.8 60.4 (85.0%) 8.4 (15.0%)

10.3.1 Hadoop when NO overlapping between the map and re-
duce phases

To facilitate the analysis of MapReduce jobs and focus on the differences regarding REP
and EC (i.e., reading input data and writing output data) we start with the case when
there is no overlapping between the map phase and the reduce phase (during the shuffle).
The same approach is employed in Spark, while in MapReduce, the shuffle starts when a
specific number of map tasks finish (5% by default). This allows the overlapping between
the computation of map tasks and the transfer of intermediate data.

First, the job execution time of Sort application with increasing input sizes is depicted
in Figure 10.1a. We can notice that REP slightly outperforms EC. For 40 GB input size
(as stated before, we focus on the run with the median job execution time), job execution
time under EC is 113.6s , thus 9% higher than that under REP (103.9s). This difference
can be explained by the time taken by the map and reduce phases (as shown in Table 10.1),
knowing that these two phases are not overlapping. Map phase finishes faster under REP
by 38% (70.6s under EC and 43.4s under REP). On the other hand, reduce phase finishes
faster under EC compared to REP by 29% (38.3s under EC and 54.3s under REP).
Runtimes distribution of map and reduce tasks. Figure 10.2 shows the timeline
of task runtimes under both EC and REP. For simplicity, we start with analyzing the
runtimes of reduce tasks and then map tasks. We can clearly see that the main contributor
to the increase in the runtimes of reduce tasks under REP compared to EC is reduce stage,
in particular, writing data to HDFS. While the times of shuffle and sort stages are almost
the same under both EC and REP, REP needs more time to transfer the output data to
the DNs: 53.3 GB under EC, among which 10.2 GB are written to disks, while 80 GB
are transferred through network to DNs under REP, among which 32.8 GB are persisted
to disks. The remaining are buffered in OS caches. On the other hand, we can see a high
variation in the runtimes of map tasks under EC compared to REP. Map runtime varies
by 33.3% under EC (from 7.9s to 69.2s) while it varies by 15.8% under REP (from 13.7s
to 43.2s) and the average runtimes are 38.6s and 29.6s under EC and REP, respectively.
Interestingly, we find that the minimum runtime of map tasks under EC is 7.9s while it
is 13.7s under REP. Moreover, the runtimes of 25% of map tasks under EC are below
the average of map runtimes under REP. Hence, the degradation in the runtimes of map
tasks under EC is not due to data locality or network overhead, especially as the network
is under-utilized during the whole map phase under EC (100 MB/s on average).
Zoom-in on map phase. Figure 10.3a shows the distribution of input data. We notice
that the variation in data distribution is almost the same under both EC and REP (a
standard deviation of 1.36 GB under EC and 1.13 GB under REP). Accordingly, and
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Figure 10.2: Tasks of Sort application under EC and REP (non-overlapping shuffle) for
40 GB input size. The first 160 tasks are map tasks, while the remaining 36 tasks are
reduce tasks.

given that each node executes the same number of map tasks, we expect that the amount
of data read by each node is the same: as we run 8 containers per node, and each map
task handles 1 block of data (256 MB), therefore, ideally 2 GB of data should be read
by each DN. However, as shown in Figure 10.3b, the amount of data read varies across
nodes under both REP and EC. Under REP, we can see this with a couple of outliers
that represent non-local reads (in our experiments, the achieved data locality is 94%);
hence this contributes to the variation in the map runtimes under REP. On the other
hand, we observe high variation (44.3%) in the data read across DNs under EC. This
imbalance of data read under EC is related to the fact that HDFS block distribution
algorithm does not distinguish between data and parity chunks under EC, thus, some
DNs might end up with more parity chunks than others even though they have the same
total number of chunks. As map tasks do not read parity chunks when there is no failure
or data corruption, the imbalance in data read occurs and results in longer runtimes
of map tasks. Nodes which are continuously serving map tasks running in other nodes
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Figure 10.3: Initial data load on DNs, data read per node, and data written per node for
non-overlapping (NO) and overlapping (O) cases.

exhibit high CPU iowait time and therefore the runtimes of map tasks running within
them increase. The median iowait time of the node with the largest data read (3.53 GB)
is 82% while the median iowait time of the node with the lowest data read (0.35 GB)
is 0.7%. Consequently, the average of map runtimes (map tasks running within the two
aforementioned nodes) is 59s and 25s , respectively. As a result, the runtimes of map
tasks which are severed by those nodes also increase. In conclusion, Hadoop exhibits
a high read imbalance under EC which causes stragglers. This, in turn, prolongs the
runtimes of map tasks compared to REP and causes high variation in map runtimes.

The same trend can be observed with Wordcount application (where the shuffle data
and final output are relatively small compared to the input size); Load imbalance in
data read across nodes under EC which results in longer (and high variation in) map
runtimes (CPU iowait during the map phase is around 15% under EC and almost zero
under REP). However, as the job execution time (shown in Figure 10.1b) is dominated
by the map phase (as shown in Table 10.1 and Figure 10.4, the map phase accounts
for around 90% of the execution time for Wordcount application), and given that map
phase is quicker by 40% under REP (101s under EC and 60.4s under REP); Wordcount
application finishes 35% slower under EC compared to REP (the job execution time is
113.7s and 73.8s under EC and REP, respectively). Note that reduce phase takes almost
the same time under both EC and REP (8.2s and 8.4s , respectively) as the final output
data is relatively small.

Finally, Figure 10.5a and Figure 10.5b show the amount of transferred data between
the DNs when running Sort and Wordcount applications with different input sizes, re-
spectively. When sorting 40 GB input size, 137 GB is transferred under EC, 8.7% more
than that under REP (125 GB). However, for Wordcount application, 10x more data are
transferred under EC. As shuffled and output data sizes are small compared to the input
data, all the extra data under EC is attributed to the non-local read. However, for Sort
application, the amount of non-local data read under EC is compensated when writing
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Figure 10.4: Tasks of Wordcount application under EC and REP (non-overlapping shuffle)
for 40 GB input size. The first 160 tasks are map tasks, while the remaining 36 tasks are
reduce tasks.

(i.e., replicating) the output data under REP.

Observation 7. Though they have different functionalities, chunks (i.e., data and par-
ity) are treated the same when distributed across DNs. This results in a high variation in
the data reads amongst the different nodes in Hadoop cluster when running MapReduce
applications. Data read imbalance can degrade the performance of MapReduce applica-
tions. The performance degradation related to the stragglers caused by hot-spots (nodes
with large data reads).

10.3.2 The case of overlapping shuffle

Similarly to the previous section, we start by analyzing the execution of Sort application
under both storage policies. It is expected that overlapping the shuffle and the map
phase will result in better performance in both cases, especially under REP. However,
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Figure 10.5: Amount of exchanged data between DNs during the job execution (non-
overlapping shuffle).
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Figure 10.6: Job execution time of Sort and Wordcount applications under EC and REP.

this is only true for small data inputs (non-overlapped run is slower by up to 30%). With
large data inputs, overlapping results in a degradation in the performance of MapReduce
applications under replication due to several stragglers (map and reduce) as explained
below.
Job execution times: EC vs. REP. For Sort application with 40 GB input size, job
execution time under EC is 103s while it is 129s under REP, thus 20% higher than that
under EC as shown in Figure 10.6a. Moreover, for 80 GB input size, the improvement in
the execution time under EC is increased to 31% (201s under EC and 291s under REP).
The difference in job execution time can be explained by the time taken by the map and
reduce phases. Map phase finishes faster under EC by 3.5% (66.6s under EC and 68.2s
under REP). Moreover, the reduce phase is completed faster under EC by 24.5% (78.5s
under EC and 97.8s under REP on average). Importantly, the reduce stage is 59% faster
under EC (7.7s) compared to REP (19s).
Runtime distribution of map and reduce tasks. Figure 10.7 shows the timeline of
task runtimes under both EC and REP. We can still see that the main contributor to
the increase in the runtimes of reduce tasks under REP compared to EC is the reduce
stage. However, different from the non-overlapping scenario, the runtimes of map tasks
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Figure 10.7: Tasks of Sort application under EC and REP for 40 GB input size. The first
160 tasks are map tasks, while the remaining 36 tasks are reduce tasks.

and reduce tasks exhibit high variation under both EC and REP. Map runtime varies by
33.3% under EC (from 9.1s to 62.8s) while it varies by 23.9% under REP (from 13.1s to
62.9s) and the average map runtimes are 37.5s and 31.8s under EC and REP, respectively.
Reduce runtime varies by 12.2% under EC (from 47.9s to 76.4s) while it varies by 29.7%
under REP (from 41.9s to 96.1s) and the average is 55.4s and 60.8s under EC and REP,
respectively. Interestingly, we observe a high ratio of stragglers (heavy-tails) under REP:
the runtimes of 5% of map tasks are at least 1.4x, and 1.3x longer than the average map
runtimes under REP and EC, respectively; and the runtimes of 20% of reduce tasks are
1.3x longer than the average reduce runtimes under REP.
Zoom-in on map phase. Similar to the non-overlapping case, we still observe high
variation in the data read across nodes which causes long iowait times and therefore
increases the runtimes of the map tasks which are executed or served by nodes with
large data read (as in the non-overlapping case). While the median iowait time of the
node with the highest data read (2.88 GB) is 63.6% and the average map runtimes is
49.5s , the median iowait time of the node with lowest data read (0.36 GB) is 3.1% and
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Figure 10.8: Tasks of Wordcount application under EC and REP for 40 GB input size.
The first 160 tasks are map tasks, while the remaining 36 tasks are reduce tasks.

the average map runtimes is 21.1s . Surprisingly, this waiting time is not much longer
than the one observed in the non-overlapping scenario for the node with the largest data
read, knowing that nodes are also writing data which are shuffled from other nodes.
In conclusion, map tasks finish faster in nodes with low read data and therefore more
reduce tasks are scheduled to them. This increases the waiting times and also increases
the variation in the reduce stages. While this imbalance in reduce tasks distribution helps
to reduce the variation in the map runtimes under EC, it prolongs the runtimes of some
maps tasks under REP and more importantly, it prolongs and causes high variation in
the runtimes of reduce tasks under REP. Figure 10.3c shows the write data across nodes,
we can observe high variation in the write data under REP compared to EC.

Similarly, the same trend can be observed with Wordcount application; high variation
in map tasks under EC that causes longer job execution time as shown in Figure 10.8
and Figure 10.6b.
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Figure 10.9: Job execution time of Sort application under EC and REP with disk persis-
tence enabled.

Observation 8. Erasure coding can speed up the execution time of applications with
large outputs (e.g., Sort application).

Observation 9. It is a bit counter-intuitive that jobs finish faster when disabling over-
lapped shuffle for large input size especially for Sort application which is shuffle intensive.
The main reason behind that is resource allocation in YARN: Reduce tasks are launched
when resources are available and after 5% of map tasks finished; this, on the one hand,
may delay the launching of some map tasks as resources are occupied by early launched
reduce tasks, and on the other hand, increases skew across nodes and cause stragglers
under replication but not EC.

10.3.3 The impact of disk persistency

Usually, data-intensive clusters are shared by multiple applications and job outputs are
synchronized to disks directly (not buffered in caches). Thus, job outputs are completely
written to disk. To study the impact of disk persistency on the performance of MapReduce
applications under EC and REP, we make sure that the data outputs are completely
flushed to disk in the reduce stage (i.e., MapReduce jobs are considered successful when
outputs are persisted to disk completely). We focus on Sort application since the size of
output data is equal to the size of input data, thus, the impact of persisting the data to
disk is clearer, in contrast to Wordcount application.
Results. Figure 10.9a shows the job execution times of Sort application in case of
overlapping shuffle. For 40 GB input size, the job execution time under EC is 149.4s ,
thus, 25% faster than under REP (201.3s). As expected, the job execution time with disk
persistency has increased compared to the previous scenario (Section 10.3.2). Obviously
persisting output data does not impact reading input data, thus, the map phase has the
same duration. The main increase in the execution time is attributed to the reduce stage.
Reduce phase under REP takes 108.4s (97.8s previously), in which 89s are spent in the
reduce stage (writing output data), while under EC, reduce phase takes 70.4s , of which
46.6s for the reduce stage, 1.9x faster than reduce stage under REP.
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Figure 10.10: The impact of different RS schemes on Sort execution time.

Figure 10.9b shows the job execution times of Sort application when there is no over-
lapping between map and reduce phase. Compared to previous results (see Figure 10.1a),
we can notice that with disk persistency, job execution times under EC are now lower
than those under REP. For example, for 40 GB input size, job execution time under EC
is 130.4s , while it is 155.3s under REP, thus, 16% faster under EC. Here, the amount of
data written to disk – to complete the job – is 120 GB (32.8 GB previously) under REP
while it is 60 GB (10.2 GB previously) under EC. Consequently, reduce phase under REP
takes 104.5s (54.3s previously), in which 70.6s is spent in the reduce stage, while under
EC, reduce phase takes 68s , of which 24.8s for the reduce stage, 2.8x faster than reduce
stage under REP.

Observation 10. When output data are completely persisted to disk, jobs under EC
are clearly faster than those under REP, at least during the reduce stage. This situation
(synchronizing output data to disks directly) is common in shared clusters as the available
memory to buffer output data is usually limited [203].

10.3.4 The impact of RS schemes

In this section, we present the impact of different RS schemes on jobs execution time
of MapReduce applications. We note here that different schemes have different fault
tolerance guarantee, therefore, they could not be considered as alternatives, however, we
compare them from their performance point of view.
Results. Figure 10.10 shows job execution time of Sort application under different RS
schemes. For all the input sizes, we can notice an increase in the job execution time
while increasing the number of data chunks of the EC scheme. For example, for 40 GB
input size, job execution time is 99.8s , 102.7s , and 105.3s under RSp3, 2q, RSp6, 3q, and
RSp10, 4q, respectively. The small difference in job execution time between these schemes
is mainly contributed by the map phase (In reduce phase, the same amount of data is
transferred across nodes under the three EC schemes). First, more data is read locally
when the number of data chunks is small. Second, as each map task involves n reads
in parallel, increasing the number of data chunks (n) accelerates reading the inputs of
map tasks. But increasing the number of chunks increases the number of I/O accesses
and causes higher CPU iowait time and therefore increases the execution of map tasks
(performing the map operations). The average CPU iowait time per node is 19.8s , 27.8s ,
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Figure 10.11: Sort execution time with 40 GB input size under failure.

and 28.6s under RSp3, 2q, RSp6, 3q, and RSp10, 4q, respectively. Consequently, the av-
erage runtimes of map tasks are 35.4s , 37.3s , and 37.7s under RSp3, 2q, RSp6, 3q, and
RSp10, 4q, respectively. Finally, we observe that the three EC schemes exhibit almost the
same data read skew, with slightly higher skew under RSp10, 4q; this leads to maximum
runtimes of map tasks of 60s , 60.9s , and 65.6s under RSp3, 2q, RSp6, 3q, and RSp10, 4q,
respectively.

Observation 11. While increasing the size (n ` k) of RS schemes can improve failure
resiliency, it reduces local data accesses (map inputs) and results in higher disk accesses.
Moreover, this increases the probability of data read imbalance (i.e., it introduces strag-
glers).

10.3.5 Performance under failure

A well-known motivation for replication and erasure coding is tolerating failures. That
is, data are still available under failure and therefore data-intensive applications can
complete their execution correctly (though with some overhead). In this section, we
study the impact of node failure on MapReduce applications under both EC and REP.
We simulate node failure by killing the NodeManager and DataNode processes on that
node. The node that hosts the processes to be killed is chosen randomly in each run –
we make sure that the affected node does not run the ApplicationMaster process. We fix
the input size to 40 GB, and focus on Sort application with non-overlapping shuffle, for
simplicity. We inject one and two node failures at 50% and 100% progress of the map
phase.
Failure detection and handling. When the RM does not receive any heartbeat from
the NM for a certain amount of time (10 minutes by default), it declares that node as
LOST. Currently running tasks on that node are marked as killed. In addition, completed
map tasks are also marked as killed since their outputs are stored locally on the failed
machine, not in HDFS as reduce tasks. Recovery tasks, for killed ones, are then scheduled
and executed on the earliest available resources. If a task – running in a healthy node
– is reading data from the failed node (i.e., non-local map task under REP, map tasks
under EC, and reduce tasks), it switches to other healthy nodes. In particular, non-local
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map tasks under REP continues reading the input block from another replica; map tasks
under EC triggers degraded read (i.e., reconstruct the lost data chunk using the remaining
data chunks and a parity chunk); and reduce tasks read the data from the recovery map
tasks.

Results. Figure 10.11 shows the job execution time of Sort application when chang-
ing the number of failed nodes and the failure injection time with the default timeout.
As expected, the job execution time increases under failure, under both EC and REP,
compared to failure-free runs. This increase is mainly attributed to the time needed to
detect the killed NM(s) and the time needed to execute recovery tasks. Moreover, the job
execution time of Sort application is longer when increasing the number of failed nodes
or the time to inject failures. This is clearly due to the increase in the number of recovery
tasks. For example, when injecting the failure at 100% of map progress, the execution
time is around 19s and 24s longer compared to injecting failure at 50% map progress
under both EC and REP, respectively. This is due to the extra cost of executing recovery
reduce tasks. This is consistent with a previous study [71].

Failure handling under EC and REP. To better understand the overhead of failures
under EC and REP, we provide an in-depth analysis of failure handling. We make sure
that failed nodes are detected directly and therefore eliminate the impact of failure de-
tection on job execution time. Surprisingly, we find that the overhead of failures is lower
under EC than under REP when failure is injected at 50% map progress. For example,
when injecting two node failures, the job execution time increases by 3.2% and 4.7% un-
der EC and REP, respectively. This is unexpected as more tasks are affected by failures
under EC compared to REP (in addition to recover tasks, tasks with degraded reads).
On the one hand, the total number of degraded reads is 78 degraded reads, among which
4 degraded reads are associated with the recovery tasks. However, as the main difference
between normal map tasks and map tasks with degraded reads is the additional decoding
operation to construct the lost chunk and given that this operation does not add any
overhead, degraded reads incur almost zero overhead. To further explain: in case of a
normal execution of map task, 6 data chunks will be read, cached and processed; while
in case of a task with a degraded reads 5(4) data chunks and 1(2) parity chunk(s) will
be read, cached, decoded and processed; hence no extra data is retrieved and no extra
memory overhead as chunks are eventually copied to be processed. Hence, the average
runtimes of map tasks with and without degraded read are almost the same (38s). On
the other hand, recovery map tasks are faster under EC compared to REP: the average
runtimes of recovery tasks under 2 failures are 6.3s and 7.5s under EC and REP, re-
spectively. This is due to the contention-free parallel reads (recovery tasks are launched
after most of the original tasks are complete) and the non-local execution of recovery
tasks under REP (75% of recovery tasks are non-local, this is consistent with a previous
study [306]).

Observation 12. Unlike EC with contiguous block layout which imposes high network
and memory overhead and extra performance penalty under failures [173], degraded reads
under EC with striped block layout introduces negligible overhead and therefore the
performance of MapReduce applications under EC is comparable to that under REP
(Even better than REP when recovery map tasks are non-locally executed).
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Table 10.2: Performance measures for Kmeans application.

EC REP
Total execution time (s) 2077 2143
Data Read from disk (GB) 225 536
Data written to disk (GB) 396 743

10.3.6 Machine learning applications: Kmeans

A growing class of data-intensive applications is Machine Learning (ML) applications.
ML applications are iterative by nature: input data is re-read in successive iterations, or
read after being populated in later iterations.

In this section, we present the performance of Kmeans application under EC and REP.
Kmeans application proceeds in iterations, each one is performed by a job and followed
by a classification step. In each iteration, the complete data set is read (i.e., 222 GB)
and the cluster centers are updated accordingly. The new centers (i.e., few kilobytes)
are written back to HDFS during the reduce phase. The classification job is a map-only
job that rewrites the input samples accompanied by the “cluster ID” it belongs to and a
“weight” that represents the membership probability to that cluster. Therefore, it has an
output of 264 GB.
Results. Figure 10.12 shows the execution time of each job under both EC and REP.
The execution time of the first iteration is 204s and 282s under REP and EC, respec-
tively. This 27% difference in the execution time is due to the longer iowait time under
EC (iowait time is 19% under EC while it is 11% under REP) and due to the stragglers
caused by hot-spots under EC (i.e., the average and the maximum map runtimes are 46.7s
and 131.5s under EC while they are 32.2s and 40.3s under REP). For later iterations,
the data is served mostly from memory. The whole data is requested from the same
nodes but from caches under EC and thus the execution time is reduced by almost 40%.
But, as data can be requested from 3 DNs under REP, there is a higher probability that
some DNs are serving data from disk (even in the last iteration): at least 9 GB of data is
read from disks in later iterations under REP. Hence, this explains the slight advantage
of EC against REP, given that both are expected to perform the same as data is mostly
served from memory (more details in Section 10.4). Finally, the execution time of the
classification phase is 27% faster under EC compared to REP. This is expected as the
output data under REP is double the one under EC: 792 GB under REP among which
743 GB is persisted to disk, and 396 GB under EC which is completely persisted to disk.
As a result, Kmeans application runs slightly faster under EC (It takes 2143s under REP,
while it is 2077s under EC). Table 10.2 summaries the differences under EC and REP.

Observation 13. Under EC, iterative applications can exploit caches efficiently. This
reduces the disk accesses and improves the performance of later iterations. While subse-
quent jobs always read data from memory under EC, this is not the case under replication
as multiple replicas of the same block could be eventually read.

Observation 14. Iterative applications have similar performance under both EC and
REP. Caching input data after the first iteration shifts the bottleneck to the CPU for
subsequent iterations, therefore, EC and REP show the same performance.
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Figure 10.12: Job execution time of Kmeans application under both EC and REP. (I)
jobs represent the iterations while (c) job is the classification step.

10.3.7 Implications

Despite the large amount of exchanged data over the network when reading the input data,
EC is still a feasible solution for data-intensive applications, especially the newly emerging
high-performance ones, such as Machine Learning and Deep Learning applications, which
exhibit high complexity and require high-speed networks to exchange intermediate data.
Furthermore, the extra network traffic induced when reading input data under EC is
compensated with a reduction by half of the intra-cluster traffic and disk accesses when
writing the output data. Analysis of the well-known CMU traces [55] shows that the size
of output data is at least 53% of the size of input data for 96% of web mining applications.
In addition, the total size of output data in three production clusters is 40% (120% if
replicated) of the total size of input data. More importantly, EC can further speed up
the performance of MapReduce applications when mitigating the map stragglers. This
cannot be achieved by employing speculative execution but that would require to rethink
data layout in EC and map task scheduling in Hadoop.

10.4 The Role of Hardware Configurations

The diversity of storage devices and the heterogeneity of networks are increasing in mod-
ern data-intensive clusters. Recently, different storage devices (i.e., HDDs, SSDs, DRAMs
and NVRAM [230, 312, 193, 158]) and network configurations (i.e., high-speed networks
with RDMA and InfiniBand [288, 182] as well as slow networks in geo-distributed en-
vironments [126]) have been explored to run data-intensive applications. Hereafter, we
evaluate MapReduce applications with different storage and network configurations.
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(b) Wordcount application

Figure 10.13: Job execution time of Sort and Wordcount applications when main memory
is used as a backend storage for HDFS.

10.4.1 Main memory with 10 Gbps network

We start by evaluating the performance of MapReduce applications when the main mem-
ory is used as backend storage for HDFS. The job execution time of Sort application with
increasing input sizes is shown in Figure 10.13a. As expected, compared to running on
HDDs, the job execution time reduced significantly (e.g., under EC and with 40 GB input
size, Sort application is 4x faster when HDFS is deployed on the main memory). This
reduction stems for faster data read and write. For 40 GB input size, the job execution
time is 24.4s under EC and 23.7s under REP. Both map and reduce phases finish faster
under REP compared to EC: map phase is completed in 15.4s under EC and 13s under
REP while reduce phase is completed in 14.8s under EC and 14.3s under REP. Moreover,
similar to HDDs, we observe imbalance in the data read under EC. But since there is no
waiting time imposed by the main memory, map tasks which are running or served by the
nodes with large data reads experience small degradation due to the network contention
on those nodes: some map tasks take 1.4x longer time compared to the average map
runtimes. This results in a longer map phase, and also leads to a longer reduce phase,
despite that the reduce stage is a bit faster under EC.

Wordcount application performs the same under both EC and REP as shown in
Figure 10.13b. The job execution time is dominated by the map phase which is limited
by the CPU utilization (CPU utilization is between 80% and 95%). Therefore, reading
the input data has a lower impact on the map runtimes.

Notably, we also evaluate MapReduce applications when using SSDs as backend stor-
age for HDFS. However, we did not present the results because they show similar trends
to those of main memory.

Observation 15. Using high-speed storage devices eliminate the stragglers caused by
disk contention, therefore, EC brings the same performance as replication. However, EC
can be the favorable choice due to its lower storage overhead.

Observation 16. Hot-spots still cause stragglers under EC on memory-based HDFS,
but those stragglers are caused by network contention.
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(b) Wordcount application

Figure 10.14: Job execution time of Sort and Wordcount applications when HDFS data
is stored in main memory and the network bandwidth is limited to 1 Gbps.

10.4.2 Main memory with 1 Gbps network

Figure 10.14a shows the job execution times of Sort application when using 1 Gbps
network. Sort application has a shorter execution time under EC for 10 GB input size,
while REP outperforms EC for larger input sizes. For example, for 80 GB input size,
job execution time is 48.2% faster under REP compared to EC, while it is 14% faster
for 40 GB input size. For 40 GB input size, map tasks have an average runtime of 4.8s
under REP, while it is 19.6s under EC. On the other hand, reduce tasks under EC finish
faster (65.6s) on average compared to reduce tasks (74.8s) under REP. Specifically, the
reduce stage takes on average 27.3s under EC, while it takes 48.2s under REP. The main
reason of the long reduce phase under EC, though the reduce stage is relatively short,
is the long shuffle time caused by the imbalance in reduce tasks execution across nodes:
some reducers finish 1.5x slower than the average.

Similar to the scenario when using 10 Gbps network, we observe that Wordcount ap-
plication performs the same under both EC and REP as shown in Figure 10.14b.

Observation 17. As the network becomes the bottleneck, the impact of data locality
with replication is obvious for applications with light map computation (e.g., Sort appli-
cation), but not for applications where map tasks are CPU intensive (e.g., Wordcount
application). Therefore, caching the input data in memory is not always beneficial, this
depends on the application.

10.4.3 HDD with 1 Gbps network

We study in this section the impact of 1 Gbps network on job execution time under both
storage policies. Figure 10.15a depicts the job execution times of Sort application under
both EC and REP while increasing input sizes. For 40 GB input size, the job finishes
in 177s under EC while it takes 191s to finish under REP, and thus EC outperforms
REP by 6.9%. Even though map tasks take more time on average under EC (40.5s)
compared to REP (31.5s), reduce tasks finish faster under EC (93s) compared to under
REP (105s). Surprisingly, compared to the case with 10 Gbps network, map tasks have
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(b) Wordcount application

Figure 10.15: Job execution time of Sort and Wordcount applications when the network
bandwidth is limited to 1 Gbps.

not been impacted by the slower network (less than 0.5% under REP and up to 7% under
EC), but reduce tasks become 45.5% slower under EC and 50.7% slower under REP.

Finally, as shown in Figure 10.15b, we observe similar trends when running Word-
count application in the case of 1 Gbps and 10 Gbps network.

Observation 18. The performances of data-intensive applications on slow networks
show similar trends as those of fast network (i.e.,10 Gbps). In particular, reading the
input data under EC is slightly affected when the network bandwidth is reduced.

10.4.4 Implications

The need for lower response time for many data analytics workloads (e.g., ad-hoc queries)
in addition to the continuous decrease of cost-per-bit of SSDs and memory, motivate
the shift of analytics jobs to RAM, NVRAM and SSD clusters that host the complete
dataset [301, 161] and not just intermediate or temporary data. Deploying EC in those
data-intensive clusters does not only result in a better performance but also in lower
storage cost. Importantly, EC is also a suitable candidate for Edge and Fog infrastructures
which are featured with limited network bandwidth and storage capacity [121].

10.5 Discussion and General Guidelines

Our study sheds the light on some aspects that could be a potential research aspect for
data analytics under EC.

Data and parity chunks distribution under EC.We have shown that chunk reads
under EC are skewed. This skew impacts the performance of map tasks. Incorporating
a chunk distribution strategy that considers data and parity chunks when reading data
could result in a direct “noticeable” improvement in jobs execution times; by reducing
the impact of stragglers caused by read imbalance. Note that as shown in Section 10.3,
those stragglers prolong the job execution times by 30% and 40% for Sort and Wordcount
applications, respectively.
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EC-aware scheduler. Historically, all the schedulers in Hadoop take data locality
into account. However, under EC the notion of locality is different from under replica-
tion. Developing scheduling algorithms that carefully consider EC could result in more
optimized task placement. The current scheduler in Hadoop treats the task as local if it
is running on a node that hosts any chunk of the block, even if it is a parity chunk. More-
over, tasks read always the data chunks even if a parity chunk is available locally. Hence,
non-local tasks and local tasks that run on nodes with parity chunks behave exactly the
same way with respect to network overhead. Importantly, interference-awareness should
be a key design for task and job scheduling under EC.

Degraded reads, beyond failure. In addition to the low network and memory
overhead, degraded reads under EC comes with “negligible” cost. This is not only benefi-
cial to reduce the recovery time under failure but can be exploited to add more flexibility
when scheduling map tasks by considering the n` k chunks.

Deployment in cloud environment. Networks in the cloud – between VMs
– are characterized by low bandwidth. Previous studies measured the throughput as
1 Gbps [308] and usually it varies as it is shared on best-effort way [33, 308, 83]. This re-
sults in a higher impact of stragglers under EC. Therefore, straggler mitigation strategies
(e.g., late-binding [230]) could bridge the gap and render EC more efficient.

Geo-distributed deployment. Geo-distributed environments, as Fog and Edge [40,
261], are featured by heterogeneous network bandwidth [119, 63]. Performing data pro-
cessing on geo-distributed data has been well studied. However, employing EC as a data
storage policy is not yet explored. It has been shown that achieving data locality may
not be always the best case, as sites have limited computations. Thus, moving data to
other sites for processing could be more efficient [126]. Hence, storing the data encoded
could provide more flexibility and more scheduling options to improve analytics jobs.

High-speed storage devices. Our experiments show that even though replication
benefits more from data locality with high-speed storage devices such as SSD and memory
(especially with low network bandwidth), this benefit depends on the type of workload.

In conclusion, could erasure codes be used as an alternative to replication? EC will
gradually take considerable deployment space from replication as a cost-effective alterna-
tive method that provides the same, sometimes better, performance and fault-tolerance
guarantees in data-intensive clusters. However, this will require a joint effort at EC level
and data processing level to realize EC effectively in data-intensive clusters.

10.6 Conclusion

The demand for more efficient storage systems is growing as data to be processed is always
increasing. To reduce the storage cost while preserving data reliability, erasure codes
have been deployed in many storage systems. In this chapter, we study to which extent
EC can be employed as an alternative to replication for data-intensive applications. Our
findings demonstrate that EC is not only feasible but could be preferable as it outperforms
replication in many scenarios. On the other hand, jobs under EC might be impacted by
the block distribution in HDFS.

In the next chapter, we introduce an algorithm to mitigate some of these shortcomings.
Specifically, we develop an EC-aware chunk placement algorithm and we show its impact
on the performance of MapReduce applications.
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Erasure coding seems to provide an attractive solution to enable scalable and efficient
data processing in data-intensive clusters. However, the previous chapter showed that
balancing the data load between DataNodes (DNs) is important for the performance of
data-intensive applications. As the data load of a DN is attributed to the amount of data
chunks reside in that node, in this chapter, we develop an EC-aware chunk placement
algorithm that aims to balance the data chunk distribution among DNs. This, in turn,
results in better job execution times as it reduces the variation (and thus the maximum)
in task runtimes. We implement our algorithm into HDFS and we experimentally show
that jobs’ performances can be improved under EC-aware placement.

The remainder of this chapter is organized as follows. First, in Section 11.1, we motive
the work by describing the impact of EC-awareness on jobs execution time. The EC-
aware chunk placement algorithm is presented in Section 11.2. Experimental methodology
is discussed in Section 11.3, followed by the experimental evaluation in Section 11.4.
Finally, a discussion about the limitations and how they can be addressed are presented
in Section 11.5 while Section 11.6 concludes this chapter.
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Figure 11.1: Data distribution balance across DNs: “Total chunks” considers all the
chunks in the cluster while “Data chunks” considers only the data chunks.

11.1 Why EC-aware Placement?

HDFS employs a random block distribution strategy to achieve best-effort balanced data
distribution among the DNs at scale. However, for better data reliability, and to ensure
rack fault-tolerance, one replica is written to a different rack.

Under replication, HDFS invokes the placement algorithm for each block, that is,
if a file is composed of multiple blocks, the replicas of each block end up in different
random nodes (supposing that the client writing the file resides outside the HDFS cluster).
However, this is not the case for the files written under EC. Under EC with RSp6, 3q, every
EC group which is composed of 6 HDFS blocks – that belong to the same file – are placed
together with their parity chunks on the same 9 nodes (as explained in Chapter 8). Thus,
data under replications are scattered on more nodes compared to EC. For example, a 6-
block file might have its blocks replicas distributed to 18 nodes under REP, while under
EC, 9 nodes host the data chunks with their parities. This increases the possibility of
having imbalance in data distribution among DNs under EC. Even worse, data placement
under EC does not distinct data chunks from parity chunks, thus, DNs exhibit noticeable
imbalance in the chunk distribution. Hence, as data processing applications read only
data chunks (in failure-free setup), the job execution time is dominated by the tasks
running and served by heavy loaded DNs.

We show that skew in data chunk distribution exists in HDFS cluster experimentally.
We set EC scheme to RSp6, 3q and HDFS block size to 256 MB. We sequentially added
167 files to an HDFS cluster of 20 DNs. Each file has a size of 1.5 GB (one EC group).
In total, we added a dataset of 250.5 GB (i.e., 1002 original blocks). Figure 11.1 shows
the coefficient of variation of the chunk distribution among DNs for increasing dataset
size. We can see that the distribution of data chunks exhibits higher variation than the
distribution of the total chunks (data and parity chunks). Moreover, the node with the
minimum number of data chunks hosts 204 chunks, while other nodes host up to 414
data chunks. In Section 11.4, we show that the difference in the amount of data chunks
between nodes could reach 7x.
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Figure 11.2: Two possible chunk distributions of 3 blocks on 6-nodes cluster under EC
with RSp4, 2q scheme. Di, Pi denotes a data chunk, a parity chunk of block i, respectively.

Motivating example

To show the impact of chunk placement on job execution time, we consider the following
example. Suppose that we have a cluster of 6 nodes hosting 3 HDFS blocks with the
RSp4, 2q scheme. Figure 11.2a shows a possible distribution of the chunks of these blocks.
Di denotes a data chunk of block i while Pi denotes a parity chunk. Even though all the
nodes have the same number of chunks (3 chunks), they do not have the same number of
data chunks. More precisely, Node 1 and Node 2 host 3 data chunks while Node 5 and
Node 6 host only one data chunk.

To process these 3 blocks, a MapReduce job with 3 map tasks should be launched.
Regardless where the map tasks are scheduled, all the data chunks are eventually read
by the DNs. As in the current version of Hadoop, tasks (i.e., clients) always choose the
nodes that host the data chunks to read the data block, if the data chunks are available
(i.e., failure-free mode), the load of each DN depends on the number of data chunks that
reside on that node.

If the map tasks are scheduled on nodes 1, 4, and 6. The first map task reads the first
block from nodes 1, 2, 3, and 4. The second map task reads the second block from nodes
1, 2, 3, and 5. And finally, the third map task reads the third block from nodes 1, 2, 4,
and 6. As a result, the first node becomes a straggler as it serves all tasks simultaneously
(3 data chunks). Consequently, the map task running on this node might experience a
delay in its runtime due to the long I/O wait time. Moreover, tasks served by this node
are also delayed due to the high I/O contention in Node 1. This degrades the performance
of MapReduce jobs (as we experimentally demonstrate in Chapter 10).

On the other hand, Figure 11.2b depicts an EC-aware distribution of these data and
parity chunks. In this case, all the DNs contribute the same amount of data (i.e., two
data chunks) during the processing, reducing the possibility of having stragglers, and
thus, the potential degradation in job execution time. However, we note that the current
implementation of EC in HDFS is oblivious to the distribution of data chunks, in essence,
it is optimized to balance the total number of chunks, but not the number of data chunks,
among DNs.
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11.2 EC-aware Chunk Placement Algorithm

In an attempt to reduce the skew in data load under EC, we propose a greedy algorithm
to distribute data chunks to the DNs evenly in a round-robin manner.

A placement request is issued for each EC group. Under RSpn, kq, an EC group is a
collection of n (sequential) blocks that belong to the same file, however, for small files or
the remaining blocks of a large file, an EC group could contain less than n blocks. In all
cases, n` k nodes should be returned to host the data and parity chunks of these blocks.

The algorithm maintains the number of data chunks and parity chunks hosted by each
DNs. Initially, they are all set to zero. The algorithm creates an array with the same
size as the number of DNs in the cluster and sets the number of data and parity chunks
to zero.

Algorithm 4 shows how a write request to HDFS is handled. The algorithm takes as
input the previously created and initialized array datanodes, the employed EC scheme
(ec_scheme), and the number of blocks in the EC group (nb_blocks). As an output, the
algorithm returns the nodes that should host the data chunks (data_nodes) and those for
parity chunks (parity_nodes). For each request, the DNs are sorted in ascending order
by the number of data chunks they host, that is, nodes with fewer data chunks are placed
first. The first n DNs are chosen to host the new n ˚ nb_blocks data chunks. After that,
the remaining DNs are sorted again in ascending order by their total number of chunks
(data + parity), and the first k DNs are chosen to host the k ˚ nb_blocks parity chunks.
This second step does not improve the distribution of data chunks, it only improves the
balance of total data distribution among the DNs.

Algorithm 4: EC-aware chunk placement
Input : datanodes, ec_scheme, nb_blocks
Output: data_nodes, parity_nodes

1 Sort datanodes by increasing number of hosted data chunks ;
2 data_nodesÐ datanodesr0..ec_scheme.ns ;
3 foreach dn P datanodesr0..ec_scheme.ns do
4 dn.nb_data_chunksÐ dn.nb_data_chunks` nb_blocks ;
5 end
6 Sort datanodes by increasing number of total hosted chunks ;
7 parity_nodesÐ datanodesr0..ec_scheme.ks ;
8 foreach dn P datanodesr0..ec_scheme.ks do
9 dn.nb_parity_chunksÐ dn.nb_parity_chunks` nb_blocks ;

10 end
11 return data_nodes, parity_nodes ;

The time complexity of the algorithm is dominated by the time complexity of the two
sort functions. Therefore, it is Op|DN | ˚ log2p|DN |q where |DN | is the number of DNs
in the cluster. However, using a priority queue to maintain the order of the DNs can
avoid the sort for every execution of the algorithm and it reduces its time complexity to
Oplog2p|DN |q (the time complexity for updating an element in a priority queue).

Applying this algorithm to the example mentioned in Section 11.1 results in 18 nodes
hosting 300 data chunks and 2 nodes hosting 306 data chunks.
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We have to note that the current algorithm only handles adding new blocks to a
single rack in HDFS. Rack awareness, data deletion, data loss, data migration, and node
decommission are not taken into account in the current version. However, these features
do not impact our findings and can be easily adopted.

Implementation

We implemented our algorithm in HDFS as a sub-class of BlockPlacementPolicyDefault
in the package org.apache.hadoop.hdfs.server.blockmanagement. It is composed of
less than 200 LOC in Java. The algorithm takes a few milliseconds to run with medium-
sized clusters (fewer than 1000 nodes).

11.3 Methodology Overview
We used the same methodology as in the two previous chapters (described in Section 9.2
and Section 10.2).

11.4 Evaluation
In the following experiments, we study how EC-aware chunk placement impacts the
performance of data access and MapReduce applications.

11.4.1 HDFS data access

To understand the impact of EC-aware placement, we first evaluate its performance for
the read and write operations in HDFS. For single read and write operations, there is no
difference as the same number of machines are active in both cases, therefore, we focus
on the concurrent access hereafter.

Figure 11.3a shows the write throughput of 10 concurrent clients with increasing
file size. We can see a similar performance with a slight improvement under EC-aware
placement. For example, 271.3 MB/s write throughput is achieved under EC-aware while
it is 261.1 MB/s under default placement when writing 20 GB files. The impact of EC-
aware placement on the write throughput is minimal as the written data are buffered in
the DNs main memory first masking the impact of disks and thus the load imbalance.

On the other hand, Figure 11.3b depicts the read throughput of 10 concurrent clients
with increasing file size while reading distinct files. When reading 10 GB files, the average
throughput per client increases from 120.6 MB/s under default placement to 161.9 MB/s
under EC-aware placement with an improvement of 34%. Moreover, we observe a lower
variation between the clients under EC-aware placement (4.2% compared to 6.7%). This
is mainly due to the balance in the distribution of the data chunks across the DNs. Fig-
ure 11.3c shows the throughput when reading the same file. As discussed in Section 9.4,
the data is read once from the disk and then served from memory. This explains the
small difference in throughput between EC-aware and EC, however, this difference could
be attributed to the contention of the memory. While the impact of EC-aware placement
is clearer when reading from disk, however, EC-aware placement can still bring perfor-
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Figure 11.3: Concurrent data access with 10 clients under the default placement (EC)
and the EC-aware placement.

mance benefits when data are in memory.

Discussion. EC-aware placement algorithm targets improving the performance of read
operation under EC, and therefore, the performance benefit is clear under concurrent
read. However, we also observe a slight improvement in the write throughput.

11.4.2 MapReduce applications

As our focus is on reading the input data under EC (i.e., the map phase), in this section,
we study the non-overlapping shuffle scenario. When presenting results related to a
specific run, we take the job that has the median execution time as a representative one.

Sort application

Figure 11.4a shows the job execution time with default and EC-aware chunk placement
for Sort application. Up to 13% reduction in job execution time can be observed under
EC-aware placement. For example, for 40 GB input size, job execution time is 91.33s
under default placement while it is 82.02s under EC-aware placement on average, thus
10.4% faster. The reduction in job execution time is attributed to the map phase. Map
phase accounts for 68.43% of the execution time under the default placement while it
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(b) Wordcount execution time

Figure 11.4: Job execution time of Sort and Wordcount applications under EC and EC-
aware placements (non-overlapping shuffle).

accounts for 61.97% under EC-aware placement.
For detailed task execution, Figure 11.5 shows the timeline of task runtimes under

both EC and EC-aware. While the times of shuffle and sort stages are almost the same
under both EC and EC-aware, we can clearly see that the main difference is attributed to
the maps tasks which have higher variation, and higher maximum runtime, under default
placement than under EC-aware placement. Map tasks under default placement vary by
27.5% (from 8.2s to 56.3s) with an average of 38.2s while under EC-aware placement
they vary by 24% (from 8.4s to 42.8s) with an average of 29.9s .

To understand the variation in tasks runtimes under EC, Figure 11.6 shows the dis-
tribution of amount of data read from disk by each DN under both placements. Under
default placement, we observe a high variation of 36% of the amount of data contributed
by each DN (as demonstrated in Chapter 8) with some nodes contributing up to 3.5 GB
while others as low as 0.5 GB. On the other hand, EC-aware placement greatly reduces
this variation to 8%, as the placement algorithm tries to balance the distribution of data
chunks between the DNs as much as possible.

This variation of data read impact negatively the runtime of map tasks. As each map
task reads its input block from 6 nodes, therefore, on average, each DN serves data to
48 tasks (supposing that it hosts 2 GB of data on average i.e., 8 blocks). However, if a
DN serves 3.5 GB (i.e., 14 blocks), 84 tasks eventually contact this DN to obtain a data
chunk (i.e., 1/6 of the block). This might cause high performance bottleneck on the disk
of that DN, leading to a delayed execution of the map tasks reading from this DN.

On the other hand, the average runtime of reduce stage is 11.3s under default place-
ment, while it is 11.5s under EC-aware placement. This confirms that EC-aware place-
ment does not adversely impact the write performance of reduce tasks.

Wordcount application

Figure 11.4b shows the job execution time under default and EC-aware chunk placements
for Wordcount application. We can see that jobs under EC-aware finish faster and have
less variation than those under default placement. For instance, up to 25% reduction
in job execution time can be observed under EC-aware placement for 40 GB input size.
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Figure 11.5: Tasks of Sort application under default EC and EC-aware placements (non-
overlapping shuffle) for 40 GB input size.

This is mainly because the map phase accounts for at least 90% of the job execution time
in Wordcount application, compared to Sort application where the map phase accounts
only for 65-69%.

Figure 11.7 shows the timeline of task runtimes under both default and EC-aware
placements. Map tasks vary by 16% (from 50.04s to 95.31s) with an average of 60.29s
under default placement while they vary by 10.3% (from 50.41s to 75.97s) with an average
of 57.80s under EC-aware placement. This high variation in tasks’ runtimes is also
attributed to the variation in data load between the DNs (Similar to Sort application, we
have observed the same variation of data load with Wordcount application). For instance,
under the default placement, the slowest 10% of the map tasks read at least one of their
data chunks from one of the two most overloaded DNs (i.e., serve more than 3 GB).

Contrary to Sort application, in Wordcount application, map phase accounts for the
majority of job execution time (i.e., more than 90%), therefore, the straggler map tasks
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Figure 11.6: Disk read bytes during the map phase of Sort application under default EC
and EC-aware placements (non-overlapping shuffle) for 40 GB input size.

have a high impact on the job execution time. EC-aware placement reduces the impact
of stragglers as the maximum task runtime is 75.97s , while under default placement, the
slowest 5% of the map tasks have a runtime greater than 77.9s and up to 95.31s .

Discussion. Even though EC-aware placement can reduce the variation of map tasks’
runtimes, we can still see some long-running tasks. We think this is due to the order
of reading data under EC and the disk seek time. However, as perspective, we will
investigate in the future some possible solutions such as data prefetching to reduce the
impact of random data read from disk.

11.5 Limitations: Towards Dynamic EC-awareness

The current placement algorithm can ensure that all the DNs contribute equally to the
total amount of data read during the map phase of an application if that application reads
the whole data in the cluster. But it can not guarantee balanced data reads within a wave
in case of multi-wave jobs, or in case of multiple applications are executed concurrently.
To support these scenarios, an online scheduling policy should be applied. For instance,
it can decide the set of map tasks to be launched in each wave or by each application in
order to balance the data load between the nodes. We discuss that in more detail in the
perspectives.

11.6 Conclusion

Erasure codes are increasingly deployed in many storage systems as cost-efficient alterna-
tive to replication. In the previous chapter, we have shown that the unawareness of EC in
the current version of chunk placement in HDFS results in data skew which impacts the
performance of MapReduce applications running under EC. In response, in this chapter,
we propose a greedy algorithm that balances the distribution of data chunks between the
DNs, which, in turn, reduces jobs execution time. For instance, up to 13% of reduction in
job execution time is achieved with Sort application, while with Wordcount application,
the reduction of job execution time attains 25%.
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Figure 11.7: Tasks of Wordcount application under default EC and EC-aware placements
(non-overlapping shuffle) for 40 GB input size.
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We are living in the era of Big Data where data is generated at an unprecedented pace
from various sources all over the world. These data can be transformed into meaningful
information that has a direct impact on our daily life. To process these Big Data, large-
scale and distributed infrastructures are needed. Hence, clouds have been evolving as the
de-facto solution for Big Data analytics as they provide an “infinite” pool of resources
in a cost-effective manner. Moreover, distributed clouds are leveraged to provide data
processing near the source of the data. However, efficient data processing in distributed
clouds is facing two major challenges:

1. Low and unpredictable service provisioning time: Data processing services
and applications in clouds are deployed in virtualized environments such as virtual
machines and containers. A service is launched from an image that is large in
size and should be locally-available at the compute host. Therefore, provisioning
a service in distributed clouds might take a considerable time to complete as the
service image might be transferred over the WAN from the image repository to the
destination host. Unfortunately, existing works focus on service provisioning inside
a single data center, and therefore, the proposed solutions are not adequate for
geo-distributed cloud and Edge environments.

2. High storage cost for data analytics workloads: backend storage systems of
data analytics rely on replication to achieve data availability. Moreover, analyt-
ics frameworks leverage replication to achieve data-aware tasks scheduling, thus,
improving the performance of data-intensive applications by reducing remote data
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access. With the current explosion of Big Data, replication becomes expensive, not
only in terms of storage cost (that is particularly important with high-end storage
devices such as DRAMs and SSDs) but also in terms of disk access [70] and network
traffic [70]. Importantly, the storage overhead of replication always increases with
the introduction of new data. And this, in turn, increases constantly the cost of
data analytics.

In this thesis, we addressed the aforementioned challenges to achieve efficient Big
Data processing in distributed clouds through several contributions that we describe
next. Then, we discuss the perspectives that our research opens for Big Data processing
in distributed clouds.

12.1 Achievements

12.1.1 Enabling efficient service provisioning in distributed clouds

Clouds provide a large-scale pool of resources and promote fast and agile service deploy-
ment. However, service provisioning is a complicated process; it requires complex col-
laboration between different cloud stacks and involves large network and disk overhead
as services’ images should be transferred over the network from the image repository to
the host server. As clouds are going geographically-distributed, the wide area network
between the cloud data centers poses new challenges on the provisioning process. Pro-
visioning services in distributed clouds requires transferring services’ images across the
expensive and highly heterogeneous wide area network which results in longer provision-
ing time. In this thesis (Part II), we study data retrieval and placement techniques to
improve service (i.e., virtual machine and container) provisioning in a distributed clouds
setup.

Network-aware virtual machine image retrieval in geo-distributed clouds

We introduce Nitro, a novel VMI management system that is designed specifically for
geographically-distributed clouds to achieve fast service (i.e., VM) provisioning. Differ-
ent from existing VMI management systems, which ignore the network heterogeneity
of WAN, Nitro incorporates two features to reduce the VMI transfer time across geo-
distributed data centers. First, it makes use of deduplication to reduce the amount of
data which is transferred due to the high similarities within an image and in-between
images. Second, Nitro is equipped with a network-aware data transfer strategy to ef-
fectively exploit links with high bandwidth when acquiring data and thus expedites the
provisioning time. We evaluate Nitro on Grid’5000 [105] testbed by emulating real net-
work topology. Experimental results show that the network-aware data transfer strategy
offers the optimal solution when acquiring VMIs while introducing minimal overhead.
Moreover, Nitro outperforms state-of-the-art VMI storage system (OpenStack Swift) by
up to 77%.
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Network-aware container image placement in Edge

Container management in Edge is gaining more importance with the widespread of Edge-
servers. To enable fast service provisioning in Edge, we propose to store the container
images across these Edge-servers, in a way that the missing layers of an image could
be retrieved from nearby Edge-servers. The main goal of this approach is to ensure
predictable and reduced service provisioning time. To this end, we present KCBP and
KCBP-WC, two container image placement algorithms which aim to reduce the maxi-
mum retrieval time of container images to any Edge-server. KCBP and KCBP-WC are
based on k-Center optimization. However, KCBP-WC tries to avoid placing large lay-
ers of a container image on the same Edge-server. Through extensive simulation, using
synthetic and real-world networks with a production container image dataset, we have
shown that our proposed algorithm can reduce the maximum provisioning time by 1.1x
to 4x compared to Random and Best-Fit based placements, respectively.

12.1.2 Characterizing and improving the performance of data-
intensive applications under erasure codes

Data-intensive clusters are heavily relying on distributed storage systems to accommodate
the unprecedented amount of data. Hadoop distributed file system (HDFS) [263] is
the primary storage for data analytics frameworks such as Spark [20] and Hadoop [19].
Traditionally, HDFS operates under replication to ensure data availability and to allow
locality-aware task execution of data-intensive applications. Recently, erasure coding
(EC) has emerges as an alternative method to replication in storage systems due to
the continuous reduction in its computation overhead. However, data blocks under EC
are spread on multiple hosts resulting in remote data access, thus, locality-aware task
execution under EC is not fully applicable. In this thesis (Part III), we first characterize
and then improve the performance of data-intensive applications in data-intensive clusters
under EC.

Experimental evaluation of erasure codes in data-intensive clusters

To understand the performance of data-intensive applications under EC, we conduct
an in-depth experimental evaluation of Hadoop on top of the Grid’5000 [105] testbed.
We use representative benchmarks to evaluate how data access pattern, concurrent data
access, analytics workloads, data persistency, failures, the backend storage devices, and
the network configuration impact the performance of MapReduce applications. While
some of our results follow our intuition, others were unexpected. For example, disk
and network contentions caused by chunks distribution and the unawareness of their
functionalities are the main factors affecting the performance of Big Data applications
under EC, not data locality.

Integrating EC-awareness in HDFS for higher performance

We observe that Hadoop task scheduler is not aware of the data layout under EC and can
result in a noticeable skew in data accesses across servers when running data-intensive
applications. This causes stragglers (i.e., some tasks exhibit a large deviation in their
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executions and take a longer time to complete compared to the average task runtime)
and, in turn, prolongs the execution time of data-intensive applications. Accordingly,
in an attempt to improve the performance of data-analytics jobs under erasure coding,
we propose an EC-aware chunk placement algorithm that balances data accesses across
servers by taking into account the semantics of data chunks when distributing them. Our
experiments on top of Grid’5000 [105] testbed show that EC-aware placement can reduce
the execution time of Sort and Wordcount applications by up to 25%. Our results pave
the way and motivate the integration of EC-awareness on the scheduling level to cope
with the dynamicity of the environment.

12.2 Perspectives

Our work opens a number of perspectives. In this section, we discuss the most promising
ones. We separate these perspectives into two parts: the first part addresses the directions
for service provisioning in distributed clouds, while the second one discusses the potential
contributions regarding the role of erasure coding in Big Data processing.

12.2.1 Prospects related to service provisioning in distributed
clouds

More elaborated network model

In our work on service image provisioning, we assume a complete graph network (as
discussed in Section 6.7). That is, each pair of sites are connected with a dedicated
link. Under this assumption, parallel retrieval of images to multiple sites produces no
interference and it is equivalent to individual single retrievals. It would be interesting to
add more constraints on the network model, e.g., putting limits on the uplink/downlink
bandwidths of the sites. In that case, concurrent service provisionings to multiple sites
have to share the available bandwidth to perform image transfers. To achieve optimal
chunk scheduling under the new constraints, the scheduling algorithm of Nitro has to be
revisited. Moreover, testing Nitro in real cloud deployment could be interesting to better
understand its performance.

Dynamic placement of container images

In our work in Chapter 7, we address the problem of static placement of container images
across Edge-servers. By static, we mean that the image dataset, the infrastructure (nodes
and network), and the image access patterns (we suppose it is uniform) are known in ad-
vance and are not changing over the time. This static approach was essential to provide
the base analysis of the problem and hence, to motivate the need for dynamic manage-
ment.

New container images will be constantly added to the system, while old ones may
be removed. On the other hand, Edge-servers may also leave and join the network.
Moreover, image access patterns are highly skewed and bursty [17]. To cope with the
dynamicity of the environment and optimize the desired objectives, dynamic placement
and reconfiguration strategies are required. For instance, placing the complete images on
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the nodes that are always requesting these images or increasing the replication factor for
popular layers may reduce the maximum retrieval time.

Furthermore, joint scheduling of containers and container images could be considered.
For example, some use cases do not require the service to be provisioned on a specific
Edge-server, but on any (set of) Edge-server(s). This allows choosing the node where
the image could be retrieved in a minimal time for instance. Moreover, multi-objective
optimization could be employed to optimize not only the maximal retrieval time but also
the average retrieval time, total storage, consumed energy, and network traffic.

12.2.2 Prospects related to data analytics under erasure codes

EC-aware and access-aware task scheduling

In Chapter 11, we present how we integrated EC-awareness into HDFS by developing a
new chunk placement algorithm. Experimentally, we show that jobs achieve better exe-
cution time under this algorithm. However, the current approach that we followed could
be improved in two dimensions; First, the static block placement has limited potential
in practice as it does not take the dynamic/changing environment into account (e.g.,
concurrent running jobs, multi-wave jobs, stragglers machines, etc.). This could be over-
come by integrating EC-awareness at the scheduler level i.e., leveraging parity chunks for
reading the input data. Second, the current placement algorithm can improve the spatial
load balance between the DNs (i.e., reading the same amount of data from each DNs),
however, the number of requests issued to each DN per unit of time is not considered.
The skew in data requests over time could lead to a temporal load imbalance. To bal-
ance the temporal I/O load between DNs, a new access-aware I/O scheduling policy is
needed. In addition, the EC-awareness could be also extended to handle heterogeneous
environments and improve the speculative execution of tasks.

Enabling data processing under erasure coding in Edge

The current emerging applications in Edge (e.g., video processing) generate large amount
of data that becomes unsustainable to be moved to the cloud for processing. These data
should be stored across Edge-servers and then processed (collectively). Besides their
limited storage capacities, Edge-servers are connected with heterogeneous networks that
renders traditional single data center processing approaches suboptimal.

Given the storage reduction brought by EC and its low computation overhead, EC
could be an ideal candidate for data processing in Edge. However, EC brings important
“high” network overhead. In contrary to replication, where the majority of tasks can
run locally, all the tasks under EC have to read most of their input data remotely.
Even worse, the cost of data transfer when reading input data and its impact on the
performance of data analytics jobs are amplified in Edge environment due to network
heterogeneity. Accordingly, as a first step towards realizing EC for data processing in
Edge, we empirically demonstrate the impact of network heterogeneity on the execution
time of MapReduce applications in a Poster [60]. We found that map tasks under EC
suffer from obvious performance degradation (the maximum map task runtime is 3.3x
longer compared to the mean) when reading input data from remote nodes, as they
have to wait for the last chunk to arrive. Thus, it is important to reduce the impact of
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network heterogeneity when reading the input data under EC. An interesting direction
is to investigate decentralized scheduling policies which try to find to which nodes to
retrieve the chunks in order to minimize the maximum retrieving time of the tasks’s
input data and to allow (data and/or parity) chunks to be proactively pushed to the
corresponding tasks. Moreover, it will be interesting to study the impact of using EC to
store intermediate data to avoid re-executing map tasks in case of failure.
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