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Abstract
While High Performance Computing (HPC) sys-
tems became more and more available and
widespread, scheduling in these systems faces
many challenges that prevent schedulers from
reaching the desired performance. Improving
scheduling performance leads to an immediate
improvement on the HPC environment which
means higher throughout and shorter response time.
Scheduling is a hard problem and no straightfor-
ward solutions exist. Knowing that a lot of his-
torical data is available, a Machine Learning tech-
nique called Learning to Rank is employed to opti-
mize the jobs priorities in the queue of the EASY-
Backfilling scheduler. We got an improvement
up to 68% in respect of the Average Bounded-
Slowdown scheduling measure. This work is the
first milestone toward a new approach for improv-
ing schedulers in a HPC environment using Ma-
chine Learning.

1 Introduction
Scheduling in High Performance Computing (HPC) systems
is a critical and important part in the global performance of
a Resource Management Software (RMS). The RMS is the
middleware that lays between the users and the cluster hard-
ware to manage the allocation of resources to the submitted
jobs. In the past decades, many researches have been con-
ducted to improve the scheduling algorithms. Multiproces-
sor scheduling is NP-Hard problem, thus no optimal algo-
rithm exists to find the optimal solution in polynomial time.
As a consequence, the proposed algorithms use heuristics to
achieve the desired performance.
Improving the scheduler performance has many direct effects
on the response time, energy consumption and resource uti-
lization, to name a few.

In recent years, more and more machine learning technolo-
gies have been used to train ranking models, and a new re-
search area named Learning to Rank (L2R) has gradually

emerged. Learning to Rank has a wide range of applica-
tions in Information Retrieval, Natural Language Processing,
and Data Mining. Learning to rank task is to automatically
construct a ranking model using training data, such that, the
model can sort new objects according to their degrees of rele-
vance, preference, or importance. Therefore, it is used exten-
sively by search engines to order the response documents of
a user’s search query. We used the same concept and adapt it
in the field of scheduling in order to rank jobs for a scheduler
in a way that maximizes its performance.

In this work, we try to incorporate a ranking technique bor-
rowed from the Machine Learning and IR domains into the
scheduling domain to improve the performance of a sched-
uler.

2 Problem description
First Come First Served (FCFS) [Schwiegelshohn and
Yahyapour, 1998] is the most basic batch scheduling algo-
rithm where jobs are considered in order of arrival. In other
words, the job that is submitted first should run first. Each job
specifies the number of processors it requires and is placed in
a First-In-First-Out (FIFO) queue upon arrival. When a suffi-
cient processors are available, the scheduler start the job at the
head of the queue. Otherwise, it blocks until its requirement
is fulfilled. As a consequence, many computational resources
are wasted.

Backfilling is a scheduling optimization that allows a
scheduler to make better use of available resources by run-
ning jobs out of order. It requires that each job specifies its
maximum execution time, normally done by the user. The
scheduler can determine the earliest time when the needed
resources will become available for the highest priority job to
start. Consequently, it can also determine which jobs can be
started without delaying this job.
By letting some jobs execute out of order, other jobs may get
delayed. Backfilling will never completely violate the FCFS
order where some jobs are never run (a phenomenon known
as “starvation”). In particular, jobs that need to wait are typi-
cally given a reservation for some future time.
Enabling backfilling allows the scheduler to start other, lower-
priority jobs as long as they do not delay the highest priority
job. Backfilling offers significant performance improvement
by filling in holes, favoring short and small jobs.



(a) The waiting queue of jobs

(b) Without backfilling (c) With backfilling

Figure 1: The backfilling mechanism

A simple schema for the backfilling is presented in Figure
1. The waiting queue of the scheduler is illustrated (Figure
1(a)). Without backfilling, the jobs are executed in order of
arrival (Figure 1(b)). Enabling backfilling will allows some
jobs to start execution before its order if no delay will be
caused to other jobs (Figure 1(c)). With backfilling, idle pro-
cessors can be exploited.

Backfilling, in which small jobs move forward to utilize the
idle resources, was introduced by Lifka [Lifka, 1995]. This
was done in the context of EASY, the Extensible Argonne
Scheduling sYstem, which was developed for the first large
IBM SP1 installation at Argonne National Lab.

The order of selecting jobs from the waiting queue is FIFO
order. Other criteria (e.g. priorities) can be employed. In this
work, we try to learn the best order for jobs to be scheduled
in the waiting queue. And this done by learning the best way
to rank jobs using Learning to Rank algorithm.

3 Related work
While the concept of backfilling is quite simple, many vari-
ations with different parameters have been proposed and
showed a good performance improvement.

One variation is related to the number of reservations. The
original backfilling with reservation do one reservation for the
first job in the queue. But the backfilled job may cause a de-
lay for jobs in the waiting queue other than the first one. To
handle this situation a reservation for all the jobs is made,
which is called "conservation reservation" but this method
lead to performance degradation. In the middle of these two
extremes, Chiang et al. suggest that making up to four reser-
vations is a good compromise [Chiang et al., 2002].

Another parameter is the order of queued jobs. The original
EASY scheduler, and many other systems and designs, use a
first come, first served (FCFS) order [Lifka, 1995]. Flexible
backfilling combines three types of priorities: an administra-
tive priority set to favor certain users or projects, a user prior-
ity used to differentiate among the jobs of the same user, and
a scheduler priority used to guarantee that no job is starved
[Talby and Feitelson, 1999]. The Maui scheduler has a prior-
ity function that includes even more components [Jackson et
al., 2001].

A final parameter is the amount of look ahead into the
queue. All previous backfilling algorithms consider the
queued jobs one at a time, and try to schedule them. But the
order in which jobs are scheduled may lead to resources frag-

mentation. The alternative is to consider the whole queue at
once, and try to find the set of jobs that together maximize de-
sired performance metrics. This can be done using dynamic
programming, leading to optimal packing and improved per-
formance [Shmueli and Feitelson, 2003].

One of the assumptions for backfilling is that the runtime of
the jobs is already known. Runtime estimation is usually done
by the user when submitting the job. Jobs are threatened to be
killed if they run more than their estimated runtimes. Predict-
ing runtime, using Machine Learning algorithms, rather than
estimating it by users shows an improvement for the back-
filling even with simple prediction as the average of the two
last available running times of the user’s jobs [Tsafrir et al.,
2007]. A paper from my team MOAIS is about to be pub-
lished in this domain also.

Because of the advantages it offers, Learning to Rank has
been gained increasing attention especially in the past sev-
eral years, and it become one of the most active research ar-
eas in Information Retrieval (IR). Many methods have been
proposed and applied to IR applications (e.g., [Cao et al.,
2006] and [Cohen et al., 1999]). A public datasets are also
released by Microsoft Research [Qin et al., 2010] by the
LEROT project to be as a benchmark dataset for the research
in this domain, in addition to about 100 of research papers
have been listed on the project website1. To be applicable on
big datasets, Google research publish a paper [Sculley, 2009]
to minimize the complexity of pairwise learning. Yahoo! also
organized a challenge for Learning to Rank [Chapelle and
Chang, 2011].
L2R is also employed in other domains. In Content-based
Image Retrieval (CBIR), the algorithm is used to accurately
rank the returned images [Faria and Veloso, 2010]. Another
application is for contextual advertising to predict the proba-
bility that users will click on ads [Tagami et al., 2013].

An important part of EASY-BF is ordering. In the orig-
inal EASY, the FCFS used as a priority to select backfilled
jobs. In EASY++, Shortest Job First (SJF) is used [Tsafrir et
al., 2007]. Considering the big available historical data about
clusters workloads, and knowing that the problem of finding
the best priority is a Hard problem (i.e. no polynomial al-
gorithm exist) employing a learning algorithm to solve the
problem is a potential candidate. To the best of our knowl-
edge, there is no other work that investigates using ranking
algorithms to order jobs in the waiting queue of the EASY
scheduler.

4 Materials and Methods
4.1 Machine Learning
Machine Learning is the set of algorithms that are used to
solve complex problems that do not have a specified algo-
rithm to solve them. For example: handwriting recognition,
face detection, plagiarism detection, stock market prediction..
and many others. Learning algorithms learn from data; they
try to find a mapping function between the input and output
that fit the available data (training set) and performs well on

1http://research.microsoft.com/en-
us/um/beijing/projects/letor/paper.aspx



the newly unseen data (test set). The data set is a set of in-
stances. Each instance is represented as a vector of features.
The data set is split into training set that will be used in the
training phase to learn the hypothesis, and a test set that will
be used to evaluate the generated hypothesis. The parameters
that are used to generate the hypothesis that perform the best
on the training set are used to build the hypothesis again on
the complete data set. The data is a key success for learn-
ing algorithms, so preparing and pre-processing the data is a
critical part in the final results.

The two main and broad categories in Machine Learning
are Supervised Learning and Unsupervised Learning. In the
supervised learning, a single target value is associated with
each instance. if the target value belongs to a finite set; the
problem is called classification. if the target value is a real
number; it is called regression. The goal is to predict the tar-
get value for the new data. On the other hand, no target value
is associated with each instance in the unsupervised learning.
The algorithm groups similar instances together according to
their features. The new data is assigned to the most similar
group. The algorithms in this categories are called clustering
algorithms.

Learning algorithms have two learning techniques: Batch
learning and Online learning. In the batch learning (offline
learning) the hypothesis is generated from the available data
and used later to predict or classify the new data and the hy-
pothesis remains unchanged. In another way, in the online
learning the hypothesis is build and updated for each new
available instance, so it can adapt for the new data and getting
ride of the training phase at the beginning. This technique is
the only solution in cases where data become available se-
quentially.

4.2 Learning to Rank algorithm
Learning to rank is a supervised learning task to generate a
ranking model. The training data consists of lists of items
with some partial order specified between items in each list.
This order is typically induced by giving a numerical or or-
dinal score for each item. The purpose of the ranking model
is to rank, i.e. produce a permutation, of items in new, un-
seen lists in a way which is “similar” to rankings in the train-
ing data in some sense. Learning to rank is mostly used to
rank documents according to a query in which the relative
ranking between the retrieved documents is more important
than the absolute importance of each document. Learning to
rank problems are categorized into three categories by their
input representation and loss function: Pointwise, Pairwise
and Listwise. In the point-wise approach the ranking problem
is reduced to regression or classification on single objects.
Similarly, in the pair-wise approach the ranking problem is
reduced to pair-wise classification problem. But in the list-
wise approach, the algorithm tries to minimize ranking losses
directly on the input list. A more extensive introduction about
the Learning to Rank algorithm is presented by Hang LI [Li,
2011].

Pairwise approach
The pairwise approach does not focus on accurately predict-
ing the relevance degree of each item (as the pointwise does);

instead, it cares about the relative order between two items.
In this sense, it is closer to the concept of “ranking” than the
pointwise approach.
In the pairwise approach, ranking is transformed into pairwise
classification. The algorithm takes as input a set of ordered
items, each item is of the form (x,y) where x ∈ Rn represent
the item in a n-dimensional space and y∈N denoting its rank,
and the goal is to find a weight vector ~w that gives a higher
score for an item a ordered before another item b. That is, the
goal of learning is to minimize the number of miss-classified
items pairs. Items from different groups are not comparable.
To do that, the algorithm build the item a−b and tries to clas-
sify it either as positive instance (+1) or as negative instance
(−1). This classification can be done using any classical su-
pervised algorithm.

Ranking SVM
Many previous studies have shown that Ranking SVM [Her-
brich et al., 2000] [Joachims, 2002] is an effective algo-
rithm for ranking. The algorithm was published by Thorsten
Joachims in 2002 [Joachims, 2002]. Ranking SVM general-
izes SVM to solve the problem of ranking: while traditional
SVM works on documents, Ranking SVM adopts partial-
order preference for document pairs as its constraints. The
optimization formulation of Ranking SVM is as follows:

min(
1
2

wT w+C ∑
i, j,k

εi, j,q)

4.3 Learning to Rank + Backfilling
In this work, we apply a ranking algorithm to find the best
priority that orders the jobs in the waiting queue according to
an objective function. The best priority is learned by feeding
the algorithm with the simulated workload that gives the best
value of the objective function after simulating it with differ-
ent priorities. As a result, a score will be assigned to each
job. This score will be used later as a priority indicator for
selecting jobs from the waiting queue to be backfilled.

Training data preparation
The training data set for the L2R algorithm should be pro-
vided as set of ordered lists (i.e. queries, in the IR domain)
these lists should be independent and identically distributed
(i.i.d.). For the workload log files, the splitting is done by cut-
ting the training set into multiple continuous lists each con-
tains the same number of jobs. shuffling the training set be-
fore splitting it does not preserve the scheduler state so the
training lists will not consistent for training.

Features selection
Each job is represented as a vector in the space R5. We decide
to represent each job by 5 features: Submit Time, Wait Time,
Run Time, Number of Allocated Processors and Requested
Time. More details about these features can be found in The
Standard Workload Format website2. All the used features
are normalized to be in range [0..1], feature normalization
leads to a faster convergence and let all the feature contribute
equally to the predicted value.

2http://www.cs.huji.ac.il/labs/parallel/workload/swf.html



4.4 The objective function
One of the commonly used measures in scheduling is the
Slowdown or stretch, which is defined for a job as follows:

sld =
Tw +Tr

Tr

where Tw is the waiting time of the job (in the queue of the
scheduler - the time between submission and the start of ex-
ecution) and Tr is the running time for that job. But, by
this measure, short jobs with reasonable delay have too large
slowdown values. For example, a 1 second job delayed for
20 minutes suffer from a slowdown of 1200. An improved
version is the bounded slowdown as suggested by [Feitelson
et al., 1997], which is defined as follows:

bsld = max
{

Tw +Tr

max{Tr,τ}
,1
}

where Tw and Tr are the same as before, and τ is a constant.
In literature, τ is generally set to 10 seconds. We will use this
value in the experiments. For the previous example, we got a
bounded slowdown of 120.
To apply this measure on the complete workload with N jobs,
we take the Average bounded slowdown:

AV Gbsld =
1
N ∑

i
bsld( jobi)

5 The proposed algorithm
In this section, we present the logical flow of the algorithm.
As most of batch Machine Learning algorithm, there are two
main phases: the training phase and the testing or evaluation
phase.

The training phase is done offline to generate the hypothe-
ses. This hypotheses is used later to give a score to the jobs.
The training phase begin by extracting and preparing the data
set as described above. After that, each list is simulated us-
ing the MAUI scheduler (EASY + backfilling) with different
priorities to select from the waiting queue; In real life, the
weights that form the priorities are usually selected randomly,
we select the weight for FCFS and Slowdown among others
because they give better results. The list that gives the best
value for the used objective function after simulation, is se-
lected. A relative score is given for each job in the selected
lists; the earlier the job is finished, the higher score is given.
The selected lists are fed to the Learning to Rank algorithm.
As a result, the hypotheses (or ranking model) is generated.
This hypotheses is used later for scoring jobs.

For the testing phase; First, the test set is simulated using
all the priorities as before and the best value for the objective
function is considered. Then, a relative score is given for each
job by the hypotheses. The test set is simulated again using
the score as priority for the backfilling.

6 Experiments and Evaluation
6.1 Testbed
The workload logs used in the experiments, presented in ta-
ble 1, are extracted (Expect Metacentrum) from the Parallel

Workloads Archive [Feitelson et al., 2014] and the cleaned
version is used as it the recommended one. Additional fil-
ters applied to the available cleaned versions to remove dirty
jobs that have missing fields or inconsistent fields: requested
cores greater than max processors, runtime less than zero,
submit time less than zero and required time greater than run-
tim. Metacentrum is extracted from the personal website of
Klusác̆ek3. Since the workloads were generated at different
sites, by machines with different sizes and reflect different
load condition, we can say that the following results are truly
representative.

The simulation done by a fork from the open source batch
scheduler simulator pyss4. The source of this simulator, the
source of the implemented algorithm and all the experiments
are available online5.

For the ranking algorithm, the SVMrank library6 is used; a
C library that implement an efficient Ranking SVM algorithm
as described in [Joachims, 2006].

Table 1: Workloads used in the experiments
Name Year #CPU #Jobs Duration

KTH SP2 1996 100 28k 11 Months
CTC SP2 1996 338 77k 11 Months
SDSC SP2 2000 128 59k 24 Months
SDSC BLUE 2003 1,152 243k 32 Months
CEA CURIE 2012 80,640 295k 3 Months
Metacentrum 2013 3,356 495k 6 Months

6.2 Learning parameters
The provided workload files are split into training set and test
set by the ratio 70:30. The training set is split again into mul-
tiple lists (e.g. 128, 256, 512, 1024 ..). We select the number
of lists that gives the best value for the objective function, a
discussion about the relation between the number of lists and
the AVGbsld value obtained comes later. Table 2 shows the
number of partitions for each workload used during experi-
ments.

Table 2: Number of training lists
Name #Training lists

KTH SP2 256
CTC SP2 256
SDSC SP2 512
SDSC BLUE 1024
CEA CURIE 1024
Metacentrum 1024

6.3 Experiments flowchart
Figure 2 shows a flowchart of the experiments. The starting
point is the desired workload and the final output is the per-

3http://www.fi.muni.cz/ xklusac
4pyss - the Python Scheduler Simulator, available at

https://code.google.com/p/pyss/
5https://github.com/jad-darrous/predictsim
6http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html



Figure 2: Flowchart of the experiments

formance gain using ranking algorithm compared to EASY +
BF.

6.4 Results
Table 3 presents a comparison of the AVGbsld value obtained
using EASY+BF and L2R. The presented values are mea-
sured on the test set. The EASY+BF column is the standard
EASY+BF scheduler, the L2R column contains the value of
the objective function when using the score of the ranking
algorithm as a priority. The last column represents the im-
provement percentage.

Table 3: Average Bounded-Slowdown on Test set
Name EASY+BF L2R Improvement

KTH SP2 34.74 21.45 61.9%
CTC SP2 35.48 21.13 67.9%
SDSC SP2 82.24 60.82 35.2%
SDSC BLUE 29.60 17.53 68.8%
CEA CURIE 24.08 2.65 809.9%
Metacentrum 10.14 10.14 -0.1%

Figure 3 shows the relation between the number of train-
ing lists and the AVGbsld measured for the workload SDSC
BLUE. in Figure 4, the time needed for the training phase is
presented as a function of the number of training lists for the
log SDSC BLUE.

6.5 Discussion
The previous table shows a large variance of improvement.
Usually in Machine Learning algorithms, the more data avail-
able for training the more the algorithm learn the underly-
ing model and a higher improvement is got. Unless for the
last workload, The improvement is increased according to the
size of the workload. The huge improvement on the log CEA
CURIE and the no improvement of Metacentrum can be par-
tially explained by the used features for the learning and the

Figure 3: AVGbsld computed for different numbers of train-
ing lists of the SDSC BLUE log

Figure 4: The execution time needed for training as a function
of the number of training lists of the SDSC BLUE log

structure of these logs, but the accurate explanation will re-
main an open question that needs more experiments and in
depth analysis of the workloads.

Increasing the number of lists for the training set does not
have a big impact in terms of AVGbsld, it is just the training
time that changes; the more training list, the shorter training
time (exponential function) as seen in Figure 4. The time is
measured in seconds but the relative values is the more im-
portant than absolute values of time.

Later, experiments have been done to use the generated hy-
potheses from one workload with other one to find out if the
same hypotheses many be used with different workload. The
results was as expected; the performance is decreased. This
can be explained by considering the fact that the character-
istics of the training jobs are different from that of the jobs
in the test set. As a consequence, no general hypotheses is
found by our experiments that can adapt and increase the per-
formance on other workloads.

7 Conclusions and Perspectives
Scheduling in HPC is an active research area for its critical
role in the currently available large-scale clusters. To improve
the scheduler performance, we proposed to use a Machine
Learning algorithm called Learning to Rank, mostly used in
the IR domain, to rank jobs to be backfilled in the waiting
queue. Our experiments show an improvement up to 68%
on average and an improvement up to 809% times on CEA-



Curie workload. The results are reported according to the Av-
erage Bounded-Slowdown as an objective function, and com-
pared with EASY+BF scheduler.

Including more features that not just represent the jobs, but
represent the execution environment of the scheduler is an
important step in order to get a more accurate results.

Another direction to continue is to use the online learning
technique instead of batch learning (i.e. offline learning). By
online learning, the hypotheses is build and updated while the
scheduler is running. Two benefits can be gained from this ap-
proach: First, no training phase at the beginning. Second and
most important, the hypotheses can be updated constantly ac-
cording to the newly upcoming jobs which leads to a more
accurate scoring for the future jobs. Current research in the
IR domain with Learning to Rank have been proposed an on-
line learning software that “.. learns directly from interactions
with users ..” [Schuth et al., 2013]. Applying online learning
in the scheduling domain will allow the scheduler to adapt
constantly and in a dynamic way to the handled workload
which will lead to an additional improvement on the overall
scheduling performance.
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